Citation: Zeng Ming, Song Chan, Cui Dongmei. Progress in Ruthenium-Catalyzed Dehydrogenation C—C/C—N Bonds Coupling Reactions from Alcohols[J]. Chinese Journal of Organic Chemistry, ;2017, 37(6): 1352-1367. doi: 10.6023/cjoc201701027 shu

Progress in Ruthenium-Catalyzed Dehydrogenation C—C/C—N Bonds Coupling Reactions from Alcohols

  • Corresponding author: Cui Dongmei, cuidongmei@zjut.com
  • Received Date: 13 January 2017
    Revised Date: 20 February 2017

Figures(21)

  • Ruthenium and its complex possess various catalytic activities such as oxidation and reduction. Ruthenium as a cheap and efficient catalyst was also widely used in such field as C—H activation. Considerable attention has been paid to it for its great applications in organic chemistry. The last decade's ruthenium-catalyzed deydrogenation C—N/C—C coupling reactions from acohols classified by their machanisms are summarized in this paper. Creative C—N/C—C coupling reactions are expected be designed by means of dehydrogenation catalyzed by ruthenium from acohols.
  • 加载中
    1. [1]

    2. [2]

      (a) Delgadorebollo, M.; Cansecogonzalez, D.; Hollering, M.; Muellerbunz, H.; Albrecht, M. Dalton Trans. 2014, 43, 4462.
      (b) Mastalir, M.; Tomsu, G.; Pittenauer, E.; Allmaier, G.; Kirchner, K. Org. Lett. 2016, 18, 3462.
      (c) Shiraishi, Y.; Fujiwara, K.; Sugano, Y.; Ichikawa, S.; Hirai, T. ACS Catal. 2013, 3, 312.
      (d) Dang, T. T.; Ramalingam, B.; Shan, S. P.; Seayad, A. M. ACS Catal. 2013, 3, 2536.
      (e) Zhang, Y.; Qi, X.-J.; Cui, X.-J.; Shi, F.; Deng, Y.-Q. Tetrahedron Lett. 2011, 52, 1334.
      (f) Shimizu, K. I.; Shimura, K.; Nishimura, M.; Satsuma, A. RSC Adv. 2011, 1, 1310.
      (g) Shimizu, K. I.; Imaiida, N.; Kon, K.; Siddiki, S. M. A. H.; Satsuma, A. ACS Catal. 2013, 3, 998.
      (h) Rawlings, A. J.; Diorazio, L. J.; Wills, M. Org. Lett. 2015, 17, 1086.
      (i) Bhat, S.; Sridharan, V. Chem. Commun. 2012, 48, 4701.
      (j) Yang, Q.; Wang, Q.-F.; Yu, Z.-K. Chem. Soc. Rev. 2015, 44, 2305.
      (k) Xiong, B.; Zhang, S.-D.; Jiang, H.-F.; Zhang, M. Org. Lett. 2016, 18, 724.

    3. [3]

      (a) Nandakumar, A.; Midya, S. P.; Landge, V. G.; Balaraman, E. Angew. Chem., Int. Ed. 2015, 54, 11022.
      (b) Huang, F.; Liu, Z.; Yu, Z. Angew. Chem., Int. Ed. 2016, 55, 862.

    4. [4]

      Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K. ACS Catal. 2015, 5, 5468.  doi: 10.1021/acscatal.5b00952

    5. [5]

      (a) Patil, N. M.; Kelkar, A. A.; Nabi, Z.; Chaudhari, R. V. Chem. Commun. 2004, 35, 2368.
      (b) Hirai, Y.; Uozumi, Y. Chem. Commun. 2010, 46, 1103.
      (c) Moghaddam, F. M.; Tavakoli, G.; Moafi, A.; Saberi, V.; Rezvani, H. R. ChemCatChem 2015, 6, 3474.
      (d) Li, S.-G.; Deng, G.-J.; Yin, F.-F.; Li, C.-J.; Gong, H. Org. Chem. Front. 2017, 4, 417.
      (e) Fairlamb, I. J.; Kapdi, A. R.; Lee, A. F.; Mcglacken, G. P.; Weissburger, F.; de Vries, A. H.; Schmieder-Van, D. V. L. Chem.-Eur. J. 2006, 12, 8750.
      (f) Li, J.-X.; Hu, W.-G.; Li, C.-S.; Yang, S.-R.; Wu, W.-Q.; Jiang, H.-F. Org. Chem. Front. 2017, 4, 373.
      (g) Barot, N.; Patel, S. B.; Kaur, H. J. Mol. Catal. A: Chem. 2016, 423, 77.
      (h) Zhang, C.; Li, T.-L.; Wang, L.-G.; Rao, Y. Org. Chem. Front. 2017, 4, 386.
      (i) Dutta, J.; Richmond, M. G.; Bhattacharya, S. Dalton Trans. 2015, 44, 13615.
      (j) Lin, W.-H.; Wu, W.-C.; Selvaraju, M.; Sun, C.-M. Org. Chem. Front. 2017, 4, 392.

    6. [6]

      (a) Chan, L. K. M.; Poole, D. L.; Shen, D.; Healy, M. P.; Donohoe, T. J. Nat. Chem. 2011, 3, 287.
      (b) Serk, K. M.; Namdu, K.; Hyeok, S. S.; Soo, P. I.; Kumar, C. R.; Jaiwook, P. Angew. Chem., Int. Ed. 2005, 44, 6913.
      (c) Anxionnat, B.; Gomez Pardo, D.; Ricci, G.; Rossen, K.; Cossy, J. Org. Lett. 2013, 15, 3876.
      (d) Chan, L. K. M.; Poole, D. L.; Shen, D.; Healy, M. P.; Donohoe, T. J. Angew. Chem., Int. Ed. 2014, 53, 761.
      (e) Alonso, F.; Riente, P.; Sirvent, J. A.; Yus, M. Appl. Catal. A 2010, 378, 42.
      (f) Fujita, K. I.; Yoshida, T.; Imori, Y.; Yamaguchi, R. Org. Lett. 2011, 13, 2278.
      (g) Yu, X.; Wang, Q.-Y.; Wu, Q.-J.; Wang, D.-W. Russ. J. Gen. Chem. 2016, 86, 178.
      (h) Rösler, S.; Ertl, M.; Irrgang, T.; Kempe, R. Angew. Chem., Int. Ed. 2015, 54, 15046.
      (i) Saidi, O.; Blacker, A. J.; Farah, M. M.; Marsden, S. P.; Williams, J. M. J. Angew. Chem., Int. Ed. 2009, 48, 7375.
      (j) Qu, P.-P.; Sun, C.-L.; Ma, J.; Li, F. Adv. Synth. Catal. 2014, 356, 447.
      (k) Michlik, S.; Kempe, R. Angew. Chem., Int. Ed. 2013, 52, 6326.
      (l) Kawahara, R.; Fujita, K.-i.; Yamaguchi, R. Adv. Synth. Catal. 2011, 353, 1161.
      (m) Wang, R.-Z.; Ma, J.; Li, F. J. Org. Chem. 2015, 80, 10769.
      (n) Wang, D.-W.; Zhao, K.-Y.; Xu, C.-Y.; Miao, H.-Y.; Ding, Y.-Q. ACS Catal. 2014, 4, 3910.
      (o) Saidi, O.; Blacker, A. J.; Farah, M. M.; Marsden, S. P.; Williams, J. M. Chem. Commun. 2010, 46, 1541.
      (p) Hille, T.; Irrgang, T.; Kempe, R. Angew. Chem., Int. Ed. 2017, 56, 371.
      (q) Elangovan, S.; Sortais, J. B.; Beller, M.; Darcel, C. Angew. Chem., Int. Ed. 2016, 54, 14483.
      (r) Yu, X.-L.; Zhao, R.-R.; Wan, H.-D.; Yang, Y.-C.; Wang, D.-W. Tetrahedron Lett. 2016, 57, 4588.
      (s) Yamaguchi, R.; Zhu, M.-W.; Kawagoe, S.; Asai, C.; Fujita, K. I. Synthesis 2009, 1220.
      (t) Wang, D.-W.; Zhao, K.-Y.; Yu, X.; Miao, H.-Y.; Ding, Y.-Q. RSC Adv. 2014, 46, 42924.
      (u) Saidi, O.; Blacker, A. J.; Lamb, G. W.; Marsden, S. P.; Taylor, J. E.; Williams, J. M. J. Org. Process Res. Dev. 2010, 14, 1046.
      (v) Lu, L.; Ma, J.; Qu, P.-P.; Li, F. Org. Lett. 2015, 17, 2350.
      (w) Yamaguchi, R.; Kawagoe, S.; Asai, C.; Fujita, K. Org. Lett. 2008, 10, 181.
      (x) Li, F.; Ma, J.; Wang, N. J. Org. Chem. 2014, 46, 10447.
      (y) Deibl, N.; Ament, K.; Kempe, R. J. Am. Chem. Soc. 2015, 137, 12804.
      (z) Kawahara, R.; Fujita, K.; Yamaguchi, R. J. Am. Chem. Soc. 2010, 132, 15108.
      (aa) Li, F.; Shan, H.; Chen, L.; Kang, Q.; Zou, P. Chem. Commun. 2011, 43, 603.
      (ab) Peña-López, M.; Piehl, P.; Elangovan, S.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2016, 55, 14967.
      (ac) Elangovan, S.; Neumann, J.; Sortais, J. B.; Junge, K.; Darcel, C.; Beller, M. Nat. Commun. 2016, 7, 12641.
      (ad) Deibl, N.; Kempe, R. Angew. Chem., Int. Ed. 2017, 56, 1663.
      (ae) Wang, N.-N.; Zou, X.-Y.; Ma, J.; Li, F. Chem. Commun. 2014, 50, 8303.
      (af) Michlik, S.; Kempe, R. Nat. Chem. 2013, 5, 140.

    7. [7]

      Sindhuja, E.; Ramesh, R. Tetrahedron Lett. 2014, 55, 5504.  doi: 10.1016/j.tetlet.2014.08.035

    8. [8]

      Tanabe, Y.; Kuriyama, S.; Arashiba, K.; Nakajima, K.; Nishibayashi, Y. Organometallics 2014, 33, 5295.  doi: 10.1021/om5006116

    9. [9]

      Rigoli, J. W.; Moyer, S. A.; Pearce, S. D.; Schomaker, J. M. Org. Biomol. Chem. 2012, 10, 1746.  doi: 10.1039/c2ob06921k

    10. [10]

      Bauer, J. O.; Leitus, G.; Ben-David, Y.; Milstein, D. ACS Catal. 2016, 6, 8415.  doi: 10.1021/acscatal.6b02946

    11. [11]

      Kondo, T.; Yang, S.; Huh, K. T.; Kobayashi, M.; Kotachi, S.; Watanabe, Y. Chem. Lett. 1991, 20, 1275.  doi: 10.1246/cl.1991.1275

    12. [12]

      Blacker, A. J.; Farah, M. M.; Hall, M. I.; Marsden, S. P.; Saidi, O.; Williams, J. M. J. Org. Lett. 2009, 11, 2039.  doi: 10.1021/ol900557u

    13. [13]

      Khalafi-Nezhad, A.; Panahi, F. ACS Catal. 2014, 4, 1686.  doi: 10.1021/cs5000872

    14. [14]

      Tsuji, Y.; Kotachi, S.; Huh, K. T.; Watanabe, Y. J. Org. Chem. 1990, 55, 580.  doi: 10.1021/jo00289a036

    15. [15]

      Izumi, T.; Yokota, T. J. Heterocycl. Chem. 1992, 29, 1085.  doi: 10.1002/jhet.v29:5

    16. [16]

      Shimura, S.; Miura, H.; Wada, K.; Hosokawa, S.; Yamazoe, S.; Inoue, M. Catal. Sci. Technol. 2011, 1, 1340.  doi: 10.1039/c1cy00235j

    17. [17]

      (a) Marco-Contelles, J.; Pérez-Mayoral, E.; Samadi, A.; Carreiras, M. C.; Soriano, E. Chem. Rev. 2009, 109, 2652.
      (b) Martínez, R.; Ramón, D. J.; Yus, M. J. Org. Chem. 2008, 73, 9778.
      (c) Venkatesan, H.; Hocutt, F. M.; Jones, T. K.; Rabinowitz, M. H. J. Org. Chem. 2010, 75, 3488.

    18. [18]

      Chen, M.-M.; Zhang, M.; Xiong, B.; Tan, Z.-D.; Lv, W.; Jiang, H.-F. Org. Lett. 2014, 16, 6028.  doi: 10.1021/ol503052s

    19. [19]

      Monrad, R. N.; Madsen, R. Org. Biomol. Chem. 2011, 9, 610.  doi: 10.1039/C0OB00676A

    20. [20]

      Porcheddu, A.; Mura, M. G.; De Luca, L.; Pizzetti, M.; Taddei, M. Org. Lett. 2012, 14, 6112.  doi: 10.1021/ol3030956

    21. [21]

      Xie, F.; Chen, M.-M.; Wang, X.-T.; Jiang, H.-F.; Zhang, M. Org. Biomol. Chem. 2014, 12, 2761.  doi: 10.1039/C3OB42589D

    22. [22]

      Zeng, M.; Wang, T.; Cui, D.-M.; Zhang, C. New J. Chem. 2016, 40, 8225.  doi: 10.1039/C6NJ01620K

    23. [23]

      Mura, M. G.; De Luca, L.; Taddei, M.; Williams, J. M. J.; Porcheddu, A. Org. Lett. 2014, 16, 2586.  doi: 10.1021/ol500916g

    24. [24]

      Iida, K.; Miura, T.; Ando, J.; Saito, S. Org. Lett. 2013, 15, 1436.  doi: 10.1021/ol4001262

    25. [25]

      (a) Srimani, D.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2013, 52, 4012.
      (b) Srimani, D.; Ben-David, Y.; Milstein, D. Chem. Commun. 2013, 49, 6632.

    26. [26]

      (a) Zhang, M.; Fang, X. J.; Neumann, H.; Beller, M. J. Am. Chem. Soc. 2013, 135, 11384.
      (b) Zhang, M.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 597.

    27. [27]

      Pan, B.; Liu, B.; Yue, E.-L.; Liu, Q.-B.; Yang, X.-Z.; Wang, Z.; Sun, W.-H. ACS Catal. 2016, 6, 1247.  doi: 10.1021/acscatal.5b02638

    28. [28]

      (a) Chen, T.-Y.; Tsutsumi, R.; Montgomery, T. P.; Volchkov, I.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 1798.
      (b) Mcinturff, E. L.; Yamaguchi, E.; Krische, M. J. J. Am. Chem. Soc. 2012, 134, 20628.
      (c) Zbieg, J. R.; Yamaguchi, E.; Mcinturff, E. L.; Krische, M. J. Science 2012, 336, 324.

    29. [29]

      Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. Org. Lett. 2009, 11, 2667.  doi: 10.1021/ol900723v

    30. [30]

      Watson, A. J. A.; Wakeham, R. J.; Maxwell, A. C.; Williams, J. M. J. Tetrahedron 2014, 70, 3683.  doi: 10.1016/j.tet.2014.04.017

    31. [31]

      Ortega, N.; Richter, C.; Glorius, F. Org. Lett. 2013, 15, 1776.  doi: 10.1021/ol400639m

    32. [32]

      Oldenhuis, N. J.; Dong, V. M.; Guan, Z. Tetrahedron 2014, 70, 4213.  doi: 10.1016/j.tet.2014.03.085

    33. [33]

      Nova, A.; Balcells, D.; Schley, N. D.; Dobereiner, G. E.; Crabtree, R. H.; Eisenstein, O. Organometallics 2010, 29, 6548.  doi: 10.1021/om101015u

    34. [34]

      Kim, J.; Hong, S. H. Org. Lett. 2014, 16, 4404.  doi: 10.1021/ol501835t

    35. [35]

      Hamid, M. H. S. A.; Williams, J. M. J. Chem. Commun. 2007, 38, 725.

    36. [36]

      Hamid, M. H.; Allen, C. L.; Lamb, G. W.; Maxwell, A. C.; Maytum, H. C.; Watson, A. J.; Williams, J. M. J. Am. Chem. Soc. 2009, 131, 1766.  doi: 10.1021/ja807323a

    37. [37]

      Yamaguchi, K.; He, J.; Oishi, T.; Mizuno, N. Chem. Eur. J. 2010, 16, 7199.  doi: 10.1002/chem.201000149

    38. [38]

      Bähn, S.; Imm, S.; Mevius, K.; Neubert, L.; Tillack, A.; Williams, J. M. J.; Beller, M. Chem. Eur. J. 2010, 16, 3590.  doi: 10.1002/chem.v16:12

    39. [39]

      Imm, S.; Baehn, S.; Zhang, M.; Neubert, L.; Neumann, H.; Klasovsky, F.; Pfeffer, J.; Haas, T.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 7599.  doi: 10.1002/anie.201103199

    40. [40]

      Balaraman, E.; Srimani, D.; Diskin-Posner, Y.; Milstein, D. Catal. Lett. 2014, 145, 139.

    41. [41]

      Zhang, M.; Imm, S.; Bähn, S.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 11197.  doi: 10.1002/anie.v50.47

    42. [42]

      Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. J. Org. Chem. 2011, 76, 2328.  doi: 10.1021/jo102521a

    43. [43]

      Ma, W.-M.; James, T. D.; Williams, J. M. Org. Lett. 2013, 15, 4850.  doi: 10.1021/ol402271a

    44. [44]

      Chen, M.-M.; Zhang, M.; Xie, F.; Wang, X.-T.; Jiang, H.-F. ChemCatChem 2014, 6, 2993.  doi: 10.1002/cctc.v6.10

    45. [45]

      Enyong, A. B.; Moasser, B. J. Org. Chem. 2014, 79, 7553.  doi: 10.1021/jo501273t

    46. [46]

      Broomfield, L. M.; Wu, Y. C.; Martin, E.; Shafir, A. Adv. Synth. Catal. 2015, 357, 3538.  doi: 10.1002/adsc.201500562

    47. [47]

      Dang, T.-T.; Ramalingam, B.; Seayad, A. M. ACS Catal. 2015, 5, 4082.  doi: 10.1021/acscatal.5b00606

    48. [48]

      Shan, S. P.; Xie, X.-K.; Gnanaprakasam, B.; Dang, T. T.; Ramalingam, B.; Huynh, H. V.; Seayad, A. M. RSC Adv. 2015, 5, 4434.  doi: 10.1039/C4RA15398G

    49. [49]

      Rajaraman, A.; Sahoo, A. R.; Hild, F.; Fischmeister, C.; Achard, M.; Bruneau, C. Dalton Trans. 2015, 44, 17467.  doi: 10.1039/C5DT02867A

    50. [50]

    51. [51]

      Marichev, K. O.; Takacs, J. M. ACS Catal. 2016, 6, 2205.  doi: 10.1021/acscatal.6b00175

    52. [52]

      Pagliaro, M.; Rossi, M. The Future of Glycerol, Royal Society of Chemistry, 2010.

    53. [53]

      Said Stålsmeden, A.; Belmonte Vázquez, J. L.; van Weerdenburg, K.; Rae, R.; Norrby, P.-O.; Kann, N. ACS Sustainable Chem. Eng. 2016, 4, 5730.  doi: 10.1021/acssuschemeng.6b01659

    54. [54]

      Shi, F.; Tse, M. K.; Zhou, S.; Pohl, M. M.; Radnik, J.; Hübner, S.; Jähnisch, K.; Brückner, A.; Beller, M. J. Am. Chem. Soc. 2009, 131, 1775.  doi: 10.1021/ja807681v

    55. [55]

      Mako, T. L.; Byers, J. A. Inorg. Chem. Front. 2016, 3, 766.  doi: 10.1039/C5QI00295H

    56. [56]

      Oldenhuis, N. J.; Dong, V. M.; Guan, Z. J. Am. Chem. Soc. 2014, 136, 12548.  doi: 10.1021/ja5058482

    57. [57]

      Yang, L.-C.; Wang, Y.-N.; Zhang, Y.; Zhao, Y. ACS Catal. 2017, 7, 93.  doi: 10.1021/acscatal.6b02959

    58. [58]

      Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. Org. Biomol. Chem. 2012, 10, 240.  doi: 10.1039/C1OB06516E

    59. [59]

      Xiong, B.; Li, Y.; Lv, W.; Tan, Z.-D.; Jiang, H.-F.; Zhang, M. Org. Lett. 2016, 47, 4054.

    60. [60]

      Xiong, B.; Zhang, S.-D.; Chen, L.; Li, B.; Jiang, H.-F.; Zhang, M. Chem. Commun. 2016, 52, 10636.  doi: 10.1039/C6CC05329G

    61. [61]

      Peña-López, M.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2016, 55, 7826.  doi: 10.1002/anie.201600698

    62. [62]

      (a) Yang, H.-Q.; Shen, R.; Deng, G.-J. Chin. J. Org. Chem. 2012, 32, 1725 (in Chinese).
      (杨辉琼, 谌儒, 邓国军, 有机化学, 2012, 32, 1725.)
      (b) Neumann, J.; Bornschein, C.; Jiao, H.; Junge, K.; Beller, M. Eur. J. Org. Chem. 2015, 2015, 5944.

    63. [63]

      Feng, C.; Liu, Y.; Peng, S.-M.; Shuai, Q.; Deng, G.-J.; Li, C.-J. Org. Lett. 2010, 12, 4888.  doi: 10.1021/ol1020527

    64. [64]

      Li, H.-J.; Wang, C.-C.; Zhu, S.; Dai, C.-Y.; Wu, Y.-C. Adv. Synth. Catal. 2015, 357, 583.  doi: 10.1002/adsc.201400898

    65. [65]

      Xie, F.; Zhang, M.; Chen, M.-M.; Lv, W.; Jiang, H.-F. ChemCatChem 2015, 7, 349.  doi: 10.1002/cctc.201402832

    66. [66]

      Xie, F.; Zhang, M.; Jiang, H.-F.; Chen, M.-M.; Lv, W.; Zheng, A.-B.; Jian, X.-J. Green Chem. 2015, 17, 279.  doi: 10.1039/C4GC01316F

    67. [67]

      Deibl, N.; Kempe, R. J. Am. Chem. Soc. 2016, 138, 10786.  doi: 10.1021/jacs.6b06448

    68. [68]

      Cho, C. S.; Kim, B. T.; Kim, T.-J.; Chul Shim, S. Tetrahedron Lett. 2002, 43, 7987.  doi: 10.1016/S0040-4039(02)01625-8

    69. [69]

      Yan, F.-X.; Zhang, M.; Wang, X.-T.; Xie, F.; Chen, M.-M.; Jiang, H.-F. Tetrahedron 2014, 70, 1193.  doi: 10.1016/j.tet.2013.12.065

    70. [70]

      Kuwahara, T.; Fukuyama, T.; Ryu, I. Org. Lett. 2012, 14, 4703.  doi: 10.1021/ol302145a

    71. [71]

      Kuwahara, T.; Fukuyama, T.; Ryu, I. RSC Adv. 2013, 3, 13702.  doi: 10.1039/c3ra42834f

    72. [72]

      Schlepphorst, C.; Maji, B.; Glorius, F. ACS Catal. 2016, 6, 4184.  doi: 10.1021/acscatal.6b01351

    73. [73]

      Chaudhari, M. B.; Bisht, G. S.; Kumari, P.; Gnanaprakasam, B. Org. Biomol. Chem. 2016, 14, 9215.  doi: 10.1039/C6OB01786J

    74. [74]

      Cini, E.; Petricci, E.; Truglio, G. I.; Vecchio, M.; Taddei, M. RSC Adv. 2016, 6, 31386.  doi: 10.1039/C6RA03585J

    75. [75]

      Sik Cho, C.; Kim, B. T.; Taejeong Kim, A.; Sang, C. S. J. Org. Chem. 2001, 66, 9020.  doi: 10.1021/jo0108459

    76. [76]

      Li, Y.; Li, H. Q.; Junge, H.; Beller, M. Chem. Commun. 2014, 50, 14991.  doi: 10.1039/C4CC06933A

    77. [77]

      Wang, Q.-F.; Wu, K.-K.; Yu, Z.-K. Organometallics 2016, 35, 1251.  doi: 10.1021/acs.organomet.6b00130

    78. [78]

      Chakrabarti, K.; Paul, B.; Maji, M.; Roy, B. C.; Shee, S.; Kundu, S. Org. Biomol. Chem. 2016, 14, 10988.  doi: 10.1039/C6OB02010K

    79. [79]

      Takashi, A. M. J.; Takahide, F.; Ilhyong, R. Chem. Lett. 2013, 42, 1163.  doi: 10.1246/cl.130465

    80. [80]

      Pena-Lopez, M.; Neumann, H.; Beller, M. Chem. Commun. 2015, 51, 13082.  doi: 10.1039/C5CC01708D

  • 加载中
    1. [1]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    5. [5]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    6. [6]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    7. [7]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    8. [8]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    9. [9]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    10. [10]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    11. [11]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    12. [12]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    13. [13]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    16. [16]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    17. [17]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    18. [18]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    19. [19]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    20. [20]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

Metrics
  • PDF Downloads(13)
  • Abstract views(2834)
  • HTML views(657)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return