Citation: Zhang Jiarong, Bi Fuqiang, Lian Peng, Zhang Junlin, Wang Bozhou. Synthesis and Characterization of an Energetic Compound 3, 3'-Bis(fluoronitromethyl-ONN-azoxy) azoxyfurazan[J]. Chinese Journal of Organic Chemistry, ;2017, 37(10): 2736-2744. doi: 10.6023/cjoc201701014 shu

Synthesis and Characterization of an Energetic Compound 3, 3'-Bis(fluoronitromethyl-ONN-azoxy) azoxyfurazan

  • Corresponding author: Bi Fuqiang, bifuqiang@gmail.com Wang Bozhou, wbz600@163.com
  • Received Date: 5 January 2017
    Revised Date: 14 March 2017
    Available Online: 2 October 2017

    Fund Project: the National Natural Science Foundation of China 21243007Project supported by the National Natural Science Foundation of China (No. 21243007)

Figures(6)

  • Using 3, 3'-diamino-4, 4'-azoxyfurazan (DAOAF) and 2, 2-dimethyl-5-nitro-5-nitroso-1, 3-dioxane (DMNNDO) as starting materials, energetic compound 3, 3'-bis(fluoronitromethyl-ONN-azoxy)azoxyfurazan (FDNAF) was designed and synthesized via oxidation coupling, hydrolysis, bromization, reduction, nitration, salification and fluorination etc., and the structures of all the intermediates and the title compound were characterized by IR, 1H NMR, 13C NMR, 15N NMR、19F NMR and elemental analysis. Using HCl/CH3CH2OH as the hydrolysis system instead of AcCl/CH3OH, the condition of hydrolysis reaction was optimized, the reaction time was shortened from 18 h to 2 h and the purity of raw product was improved to 93%. The bromination reaction conditions were also studied. Under the optimum conditions with the temperature of 20℃ and the reaction time of 30 min, the brominated product was obtained with a yield of 51.5%. Based on B3LYP method of density function theory, 13C NMR, 15N NMR and IR chemical shifts were studied theoretically, which agreed with experimental data. The physicochemical properties, detonation performances and thermal behaviors of 3, 3'-bis(nitromethyl-ONN-azoxy)azoxyfurazan (BNMAF), 3, 3'-bis(dinitromethyl-ONN-azoxy)azoxyfurazan (BDNAF) and FDNAF were studied and analyzed. The results proved that FDNAF is a potential energetic compound with the theoretical density of 2.02 g·cm-3, the decomposition point of 233.4℃, the oxygen balance of 6.72%, the explosion velocity of 9735 m·s-1, the detonation pressure of 44.9 GPa, and the characteristic drop height of impact sensitivity of 36 cm.
  • 加载中
    1. [1]

      Zhang, J.-L.; Xiao, C.; Zhai, L.-J.; Wang, X.-J.; Bi, F.-Q.; Wang, B.-Z. Chin. J. Org. Chem. 2016, 36, 1197.
       

    2. [2]

      Qiu, L.; Xu, X.-J.; Xiao, H.-M. Chin. J. Energ. Mater. 2005, 13, 262.  doi: 10.3969/j.issn.1006-9941.2005.04.018

    3. [3]

      Pang, S.-P.; Sheng, F.-F.; Lv, H.-F.; Dong, K.; Zhang, Y.-Y.; Sun, C.-H.; Song, J.-W.; Zhao, X.-Q. Acta Armamentarii 2014, 5, 725.
       

    4. [4]

      Zhai, L.-J.; Wang, B.-Z.; Huo, H.; Li, H.; Li, Y.-N.; Huang, X.-P.; Liu, N.; Fan, X.-Z. Chin. J. Org. Chem. 2013, 33, 1755.
       

    5. [5]

      Tang, Y.; Gao, H.; Parrish, D. A.; Shreeve, J. M. Chemistry (Weinheim an der Bergstrasse, Germany) 2015, 21(32), 11401.

    6. [6]

      Xu, C.; Bi, F. Q.; Zhang, M.; Li, Q.; Ding, K. W.; Ge, Z. X. Chin. J. Struct. Chem. 2015, 34, 1341.

    7. [7]

      Zhai, L. J.; Wang, B. Z.; Fan, X. Z.; Li, X. Z. Chin. J. Struct. Chem. 2014, 33, 1353.
       

    8. [8]

      Luk'yanov, O. A.; Pokhvisneva, G. V.; Ternikova, T. V. Russ. Chem. Bull. 2012, 61, 1783.  doi: 10.1007/s11172-012-0245-9

    9. [9]

      Luk'yanov, O. A.; Salamonov, Y. B.; Struchkov, Y. T.; Burtsev, Y. N.; Viadimir, S. K. Mendeleev Commun. 1992, 2, 52.  doi: 10.1070/MC1992v002n02ABEH000127

    10. [10]

      Luk'yanov, O. A.; Pokhvisneva, G. V.; Ternikova, T. V.; Shlykova, N. I.; Shagaeva, M. E. Russ. Chem. Bull. 2011, 60, 1703.  doi: 10.1007/s11172-011-0254-0

    11. [11]

      Luk'yanov, O. A.; Pokhvisneva, G. V.; Ternikova, T. V.; Shlykova, N. I. Russ. Chem. Bull. 2012, 61, 360.  doi: 10.1007/s11172-012-0050-5

    12. [12]

      Luk'yanov, O. A.; Parakhin, V. V.; Pokhvisneva, G. V.; Ternikova, T. V. Russ. Chem. Bull. 2012, 61, 355.  doi: 10.1007/s11172-012-0049-y

    13. [13]

      Luk'yanov, O. A.; Parakhin, V. V. Russ. Chem. Bull. 2012, 61, 1582.  doi: 10.1007/s11172-012-0210-7

    14. [14]

      Gottardi, W. Monatsh. Chem. 1968, 99, 815.  doi: 10.1007/BF00901238

    15. [15]

      Luk'yanov, O. A.; Pokhvisneva, G. V.; Ternikova, T. V. Russ. Chem. Bull. 2015, 64, 137.  doi: 10.1007/s11172-015-0832-7

    16. [16]

      Luk'yanov, O. A.; Salamonov, B. Y.; Bass, G. A.; Strelenko, Y. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1991, 40, 93.  doi: 10.1007/BF00959638

    17. [17]

      Luk'yanov, O. A.; Salamonov, B. Y.; Bass, G. A. Izv. Akad. Nauk, Ser. Khim. 1992, 10, 2400.

    18. [18]

      Luk'yanov, O. A.; Pokhvisneva, G. V.; Ternikova, T. V. Russian 2581050, 2016.

    19. [19]

      Li, H.-Z.; Zhou, X.-Q.; Li, J.-S.; Huang, M. Chin. J. Org. Chem. 2008, 28, 1646.
       

    20. [20]

      Zhou, Y.-S.; Zhou, C.; Wang, B.-Z.; Li, J.-K.; H. H.; Zhang, Y.-G.; Wang, X.-J.; Luo, Y.-F. Chin. J. Energ. Mater. 2011, 19, 509.  doi: 10.3969/j.issn.1006-9941.2011.05.006

    21. [21]

      Li, X.-Z.; Wang, B.-Z.; Li, H.; Li, Y.-N.; Bi, F.-Q.; Fan, X.-Z. Chin. J. Org. Chem. 2012, 32, 1975.
       

    22. [22]

      Jia, S.-Y.; Zhang, H.-H.; Zhou, C.; Lai, W.-P.; Li, X.-Z.; Wang, B.-Z. Chin. J. Org. Chem. 2015, 35, 851.
       

    23. [23]

      Bi, F.-Q.; Wang, Y.; Wang, B.-Z.; Zhang, J.-R.; Zhang, J.-L.; Zhai, L.-J.; Li, X.-Z. Chin. J. Energ. Chem. 2016, 35, 851(in Chi-nese).
       

    24. [24]

      Wang, M.-C.; Bi, F.-Q.; Zhang, G.; Luan, J.-Y.; Xu, M.; Ning, Y.-L.; Fan, X.-Z. Chin. J. Energ. Mater. 2013. 21, 473.
       

    25. [25]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

    26. [26]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Dapprich, S., Gaussian 98, Revision A.7; Gaussian Inc., Pittsburgh, PA, 1998, 40.

    27. [27]

      Wu, X.; Long, X.-P.; He, B. Sci. China, B 2008, 38, 1129.
       

    28. [28]

      Politzer, P.; Murray, J. S. Cent. Eur. J. Energy Mater. 2011, 8, 209.

    29. [29]

      Karakaya, P.; Sidhoum, M.; Christodoulatos, C.; Nicolich, S.; Balas, W. Hazard. Mater. 2005, 120, 183.  doi: 10.1016/j.jhazmat.2005.01.001

    30. [30]

      Pospísil, M.; Vavra, P.; Concha, M. C.; Murray, J. S.; Politzer, P. J. Mol. Model. 2010, 16, 895.  doi: 10.1007/s00894-009-0587-x

  • 加载中
    1. [1]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    2. [2]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    6. [6]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    7. [7]

      Fuxian Wan Ying Li Yuanhong Zhang Shuhua Zhu Jing Xu Yanfang Wang Lili Zhang . Exploration and Practice of Teaching in Agricultural Characteristic Organic Chemistry Course. University Chemistry, 2024, 39(2): 298-306. doi: 10.3866/PKU.DXHX202308041

    8. [8]

      Zhichang Xiao Xiaohui Li Ling Zhang Huimin Liu . Exploration of Ideological and Political Construction in University Foundation Course of Organic Chemistry. University Chemistry, 2024, 39(2): 314-320. doi: 10.3866/PKU.DXHX202308058

    9. [9]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    10. [10]

      Shuixing Dai Jilei Jiang Yuxiao Wang Jinqi Hu Minghua Huang . Application of Knoevenagel Reaction in Organic Chemistry Teaching. University Chemistry, 2025, 40(5): 334-341. doi: 10.12461/PKU.DXHX202405208

    11. [11]

      Linlin Wang Yanqin Chen Feng Li Ruikang Tan . Practical Exploration of Graded Teaching in the Public Organic Chemistry Course for Agricultural Science Students. University Chemistry, 2025, 40(7): 48-54. doi: 10.12461/PKU.DXHX202409054

    12. [12]

      Fei Xie Shichong Yu Ting Wang Yongsheng Jin Dazhi Zhang Yumeng Hao . Practice and Exploration of O-PIRTAS Flipped Classroom in Organic Chemistry Course. University Chemistry, 2024, 39(4): 238-243. doi: 10.3866/PKU.DXHX202310055

    13. [13]

      Hui Liu Shupeng Zhang Yuntian Zhang Wei Dong Yuji Liu Bingxin Deng Dongping Chen Yongxing Tang . Research on the Application of Virtual Reality (VR) Technology in the Teaching of Organic Chemistry. University Chemistry, 2024, 39(8): 64-71. doi: 10.3866/PKU.DXHX202312028

    14. [14]

      Dawei Zhang Yuqian Zhao Mingyu Jiao Yan Wang . Cultivation of Students’ Critical Thinking in the Practice of Ideological and Political in Organic Chemistry Courses: Taking the Discrimination and Analysis of Chemical Rumors as Examples. University Chemistry, 2025, 40(4): 181-188. doi: 10.12461/PKU.DXHX202405211

    15. [15]

      Yong Zhao Yunmei Bi Liqin Wang Rui Zhan Guoli Huang . Construction and Practice of Organic Chemistry Course in Normal Universities from the Perspective of First-Class Curriculum. University Chemistry, 2024, 39(8): 54-63. doi: 10.3866/PKU.DXHX202312088

    16. [16]

      Xipu He Wengui Duan Guishan Lin . Reform and Practice of Organic Chemistry Teaching for Non-Chemistry Major under the Four New Construction: Taking the Organic Chemistry Course Reform of Biological Science Major at Guangxi University as an Example. University Chemistry, 2025, 40(7): 42-47. doi: 10.12461/PKU.DXHX202408021

    17. [17]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    18. [18]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    19. [19]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    20. [20]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

Metrics
  • PDF Downloads(7)
  • Abstract views(2579)
  • HTML views(265)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return