Citation: Lin Songbo, He Xingrui, Meng Jinpeng, Gu Haining, Zhang Peizhi, Wu Jun. Transition-Metal-Free Synthesis of o-Halodiarylamines from o-Halophenols[J]. Chinese Journal of Organic Chemistry, ;2017, 37(7): 1864-1869. doi: 10.6023/cjoc201701012 shu

Transition-Metal-Free Synthesis of o-Halodiarylamines from o-Halophenols

  • Corresponding author: Wu Jun, wujunwu@zju.edu.cn
  • Received Date: 5 January 2017
    Revised Date: 25 February 2017
    Available Online: 1 July 2017

    Fund Project: the Special Fund for Agro-scientific Research in the Public Interest 201403030Project supported by the Special Fund for Agro-scientific Research in the Public Interest (No. 201403030) and the National Natural Science Foundation of China (No. 31471807)the National Natural Science Foundation of China 31471807

Figures(2)

  • A metal-free method (KOH/DMSO) for the synthesis of o-halodiarylamines from o-halophenols and 2-bromo-N-arylpropanamide via Smiles rearrangement reaction as a key step has been developed in this paper. This method has advantages of simple and efficient operation, easy available starting materials and transition-metal-free conditions. It exhibits the certain application value. Using this method, a series of o-halodiarylamines have been synthesized in 23%~81% yields.
  • 加载中
    1. [1]

    2. [2]

      (a) Guram, A. S.; Rennels, R. A.; Buchwald, S. L. Angew. Chem., Int. Ed. 1995, 34, 1348.
      (b) Hartwig, J. F.; Kawatsura, M. S.; Hauck, I.; Shaughnessy, K. H.; Alcazar-Roman, L. M. J. Org. Chem. 1999, 64, 5575.
      (c) Kuwano, R.; Utsunomiya, M.; Hartwig, J. F. J. Org. Chem. 2002, 67, 6479.
      (d) Gajare, A. S.; Toyota, K.; Yoshifuji, M.; Ozawa, F. J. Org. Chem. 2004, 69, 6504.
      (e) Monguchi, Y.; Kitamoto, K.; Ikawa, T.; Maegawa, T.; Sajiki, H. Adv. Synth. Catal. 2008, 350, 2767.
      (f) Roiban, G. D.; Mehler, G.; Reetz, M. T. Eur. J. Org. Chem. 2014, 2014, 2070.
      (g) Topchiy, M. A.; Dzhevakov, P. B.; Rubina, M. S.; Morozov, O. S.; Asachenko, A. F.; Nechaev, M. S. Eur. J. Org. Chem. 2016, 1908.

    3. [3]

      (a) Rivera-Utrilla, J.; Bautista-Toledo, I.; Feffo-Garcia, M. A.; Moreno-Castilla, C. Carbon 2003, 41, 323.
      (b) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A. Tetrahedron Lett. 1998, 39, 2941.
      (c) Antilla, J. C.; Buchwald, S. L. Org. Lett. 2001, 3, 2077.
      (d) Lan, J. B.; Zhang, G. L.; Yu, X. Q.; You, J. S.; Chen, L.; Yan, M.; Xie, R. G. Synlett 2004, 1095.
      (e) Gogoi, A.; Sarmah, G.; Dewan, A.; Bora, U. Tetrahedron Lett. 2014, 55, 31.
      (f) Keesara, S. Tetrahedron Lett. 2015, 56, 6685.
      (g) Yoo, W. J.; Tsukamoto, T.; Kobayashi, S. Angew. Chem., Int. Ed. 2015, 54, 6587.
      (h) Roy, S.; Sarma, M. J.; Kashyap, B.; Phukan, P. Chem. Commun. 2016, 52, 1170.

    4. [4]

    5. [5]

      Liu, Z. J.; Larock, R. C. Org. Lett. 2003, 5, 4673.  doi: 10.1021/ol0358612

    6. [6]

      Carroll, M. A.; Wood, R. A. Tetrahedron 2007, 63, 11349.  doi: 10.1016/j.tet.2007.08.076

    7. [7]

      Barros, M. T.; Dey, S. S.; Maycock, C. D.; Rodrigues, P. Chem. Commun. 2012, 48, 10901.  doi: 10.1039/c2cc35801h

    8. [8]

      Yu, J. Z.; Wang, Y. T.; Zhang, P.; Wu, Z. J. Synlett 2013, 24, 1448.  doi: 10.1055/s-00000083

    9. [9]

      Yu, J. Z.; Zhang, P. Z.; Wu, J.; Shang, Z. C. Tetrahedron Lett. 2013, 54, 3167.  doi: 10.1016/j.tetlet.2013.04.028

    10. [10]

      Breugst, M.; Tokuyasu, T.; Mayr, H. J. Org. Chem. 2010, 75, 5250.  doi: 10.1021/jo1009883

    11. [11]

      Newman, M. S. Acc. Chem. Res. 1972, 5, 354.  doi: 10.1021/ar50058a006

    12. [12]

      Zuo, H.; Meng, L. J.; Ghate, M.; Hwang, K. H.; Cho, Y. K.; Chandrasekhar, S.; Reddy, C. R.; Shin, D. S. Tetrahedron Lett. 2008, 49, 3827.  doi: 10.1016/j.tetlet.2008.03.120

    13. [13]

      Liu, Z.; Larock, R. C. Org. Lett. 2003, 5, 4673.  doi: 10.1021/ol0358612

    14. [14]

      Barros, M. T.; Dey, S. S.; Maycock, C. D.; Rodrigues, P. Chem. Commun. 2012, 48, 10901.  doi: 10.1039/c2cc35801h

    15. [15]

      Feng, E.; Huang, H.; Zhou, Y.; Ye, D.; Jiang, H.; Liu, H. J. Org. Chem. 2009, 74, 2846.  doi: 10.1021/jo802818s

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    3. [3]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    4. [4]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    5. [5]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    6. [6]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    7. [7]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    8. [8]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    9. [9]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    10. [10]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    11. [11]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    12. [12]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    13. [13]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    14. [14]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    15. [15]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    16. [16]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    17. [17]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(2)
  • Abstract views(1104)
  • HTML views(167)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return