Citation: Qian Cunwei, Zang Shiyu, Zhou Qian, Wang Dong, Li Wanxin, Wang Maoyuan. One-Pot Synthesis and Optical Properties of 2, 5-Diphenylthiophene Derivatives[J]. Chinese Journal of Organic Chemistry, ;2017, 37(7): 1781-1786. doi: 10.6023/cjoc201612045 shu

One-Pot Synthesis and Optical Properties of 2, 5-Diphenylthiophene Derivatives

  • Corresponding author: Qian Cunwei, qiancunwei@163.com Wang Maoyuan, 
  • Received Date: 15 December 2016
    Revised Date: 22 February 2017
    Available Online: 8 July 2017

    Fund Project: Natural Science Foundation of the Jiangsu Higher Education Institutions 14JKD150009Project supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 14JKD150009) and the Excellent Specialties Program Development of Jiangsu Higher Education Institutions

Figures(5)

  • The paper describes a convenient and facile methodology for the synthesis of 2, 5-diphenylthiophene derivatives. The environmentally friendly synthetic approach is supported by a one-pot tandem reaction process. All of the target products was confirmed by 1H NMR, 13C NMR and HRMS. On this basis, UV and fluorescence properties of the synthesized compounds were further explored. The experimental results showed that the UV maximum absorption wavelengths of the compounds are between 292 and 341 nm. The fluorescence spectra showed that these compounds have good fluorescence. The fluorescence emission wavelengths measured in methanol are between 386 and 454.5 nm, and the fluorescence emission wavelengths measured in dichloromethane are between 390 and 412 nm. The increase of conjugation system led to the red shift of fluorescence.
  • 加载中
    1. [1]

      For selected review, see:(a) Wu, X. F.; Neumann, H.; Beller, M. Chem. Rev. 2013, 113, 1.
      (b) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644.
      (c) Lipshutz, B. H. Chem. Rev. 1986, 86, 795.
      (d) Lu, H.; Liu, G. T. Planta Med. 1992, 58, 311.
      (e) Navarro, E.; Alonso, S. J.; Trujillo, J.; Jorge, E.; Pérez, C. J. Nat. Prod. 2001, 64, 134.
      (f) Cacchi, S.; Fabrizi, G.; Goggiamani, A. Org. Biomol. Chem. 2011, 9, 641.
      (g) Flynn, B. L.; Hamel, E.; Jung, M. K. J. Med. Chem. 2002, 45, 2670.
      (h) Palkowitz, A. D.; Glasebrook, A. L.; Thrasher, K. J.; Hauser, K. L.; Short, L. L.; Philips, D. L.; Muehl, B. S.; Sato, M.; Shetler, P. K.; Cullinan, G. J.; Pell, T. R.; Bryant, H. U. J. Med. Chem. 1997, 40, 1407.
      (i) Tsuji, H.; Cantagrel, G.; Ueda, Y.; Chen, T.; Wan, L. J.; Nakamura, E. Chem. Asian J. 2013, 8, 2377.

    2. [2]

      Joule, J. A.; Mills, K. Heterocyclic Chemistry, Trans. by You, Y.-C.; Gao, D.-B. Science Press, Beijing, 2004, p. 324(in Chinese).

    3. [3]

      (a) Snégaroff, K.; Komagawa, S.; Chevallier, F.; Gros, P. C.; Golhen, S.; Roisnel, T.; Uchiyama, M.; Mongin, F. Chem.-Eur. J. 2010, 16, 8191.
      (b) Kel'in, A. V.; Gevorgyan, V. J. Org. Chem. 2002, 67, 95.
      (c) Rao, H. S. P.; Jothilingam, S. J. Org. Chem. 2003, 68, 5392.
      (d) Aponick, A.; Li, C. Y.; Malinge, J.; Marques, E. F. Org. Lett. 2009, 11, 4624.
      (e) Egi, M.; Azechi, K.; Akai, S. Org. Lett. 2009, 11, 5002.
      (f) Dheur, J.; Sauthier, M.; Castanet, Y.; Mortreux, A. Adv. Synth. Catal. 2010, 352, 557.

    4. [4]

      (a) Sun, H.; Wu, X.; Hua, R. Tetrahedron Lett. 2011, 52, 4408.
      (b) Singha, R.; Nandi, S.; Ray, J. K. Tetrahedron Lett. 2012, 53, 6531.
      (c) Pridmore, S. J.; Slatford, P. A.; Williams, J. M. J. Tetrahedron Lett. 2007, 48, 5111.
      (d) Kramer, S.; Madsen, J. L. H.; Rottl€ander, M.; Skrydstrup, T. Org. Lett. 2010, 12, 2758.
      (e) Nun, P.; Dupuy, S.; Gaillard, S.; Poater, A.; Cavallod, L.; Nolan, S. P. Catal. Sci. Technol. 2011, 1, 58.
      (f) Jiang, H.; Zeng, W.; Li, Y.; Wu, W.; Huang, L.; Fu, W. J. Org. Chem. 2012, 77, 5179.
      (g) Zheng, Q.; Hua, R.; Yin, T. Curr. Org. Synth. 2013, 10, 161.
      (h) Beny, J.-P.; Dhawan, S. N.; Kagan, J.; Sundlass, S. J. Org. Chem. 1982, 47, 2201.
      (i) Pridmore, S. J.; Slatford, P. A.; Daniel, A.; Whittlesey, M. K.; Williams, J. M. J. Tetrahedron Lett. 2007, 48, 5115.
      (j) Lavallo, V.; Frey, G. D.; Donnadieu, B.; Soleilhavoup, M.; Bertrand, G. Angew. Chem., Int. Ed. 2008, 47, 5224.
      (k) Zheng, Q.; Hua, R. Tetrahedron Lett. 2010, 51, 4512.
      (l) Mandadapu, A. K.; Sharma, S. K.; Gupta, S.; Krishna, D. G. V.; Kundu, B. Org. Lett. 2011, 13, 3162.
      (m) Mandadapu, A. K.; Dathi, M. D.; Arigela, R. K.; Kundu, B. Tetrahedron 2012, 68, 8207.
      (n)Wang, L.; Yu, X.; Feng, X.; Bao, M. Org. Lett. 2012, 14, 2418.
      (o) Zheng, Q.; Hua, R.; Yin, T. Curr. Org. Synth. 2013, 10, 161.
      (p) Jiang, H.; Zeng, W.; Li, Y.; Wu, W.; Huang, L.; Fu, W. J. Org. Chem. 2012, 77, 5179.

    5. [5]

      (a) Zheng, Q.; Hua, R.; Jiang, J.; Zhang, L. Tetrahedron 2014, 70, 8252.
      (b) Zhang, G.; Yi, H.; Chen, H.; Bian, C.; Liu, C.; Lei, A. Org. Lett. 2014, 16, 6156.
      (c) Tang, J.; Zhao, X. RSC Adv. 2012, 2, 5488.

    6. [6]

      (a) Li, D.; Yin, K.; Li, J.; Jia, X. Tetrahedron Lett. 2008, 49, 5918.
      (b) Li, L.; Wang, J.; Zhang, G.; Liu, Q. Tetrahedron Lett. 2009, 50, 4033.

    7. [7]

      Urselmann, D.; Antovic, D.; Müller T. Beilstein J. Org. Chem. 2011, 7, 1499.  doi: 10.3762/bjoc.7.174

    8. [8]

      Irudayanathan, F. M.; Raja, G. C. E.; Lee, S. Tetrahedron 2015, 71, 4418.  doi: 10.1016/j.tet.2015.05.017

  • 加载中
    1. [1]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    4. [4]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    5. [5]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    6. [6]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    7. [7]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    10. [10]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    11. [11]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    12. [12]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    13. [13]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    14. [14]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    15. [15]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    16. [16]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    17. [17]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    18. [18]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

Metrics
  • PDF Downloads(0)
  • Abstract views(1483)
  • HTML views(186)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return