Citation: Yan Yugang, Chen Xueying, Yang Xinying, Xu Wenfang, Zhang Yingjie. Sulfoxide Analogs of TAK-875 as G Protein Coupled Receptor 40 Agonists: Synthesis, Determination of Absolute Configuration and Biological Activity[J]. Chinese Journal of Organic Chemistry, ;2017, 37(4): 858-865. doi: 10.6023/cjoc201612041 shu

Sulfoxide Analogs of TAK-875 as G Protein Coupled Receptor 40 Agonists: Synthesis, Determination of Absolute Configuration and Biological Activity

  • Corresponding author: Xu Wenfang, wenfxu@163.com Zhang Yingjie, zhangyingjie@sdu.edu.cn
  • Received Date: 12 December 2016
    Revised Date: 16 February 2017

    Fund Project: the National Natural Science Foundation of China 21302111the National Natural Science Foundation of China 81373282the Young Scholars Program of Shandong University 2016WLJH33the Major Project of Science and Technology of Shandong Province 2015ZDJS04001

Figures(5)

  • G protein coupled receptor 40 (GPR40) is a potential target for treatment of type 2 diabetes. Herein, the well-known GPR40 agonist TAK-875 (compound 1) was synthesized as a positive control. Besides, an epimeric mixture 11, which was the sulfoxide analog of compound 1 was also synthesized. The following chiral HPLC separation of 11 led to optically pure compounds 12 (S, S, 100.0% de) and 13 (R, S, 100.0% de), of which the absolute configurations were determined by circular dichroism spectra analysis. In vitro biological activity evaluation results showed that the GPR40 agonistic potency of epimeric mixture 11 (EC50=77.5 nmol·L-1) and its two optically pure epimers (12, EC50=76.1 nmol·L-1; 13, EC50=114.0 nmol·L-1) were comparable to that of compound 1 (EC50=84.3 nmol·L-1), which was rationalized by docking analysis. Compounds 12 and 13 warrant further drug-like property evaluation due to their promising potency and novel structures.
  • 加载中
    1. [1]

      The Diabetes Education Consultative Section (DECS); Jeannete, A.; Nizar, A. B.; Maria, H. H.; Sir, M. H.; Ute, L.; Dianna, M.; Farheen, O.; Chris, P.; Nasheeta, P.; Andrey, P.; Mohammad, M. A.S.; Elena, S.; Teresa, T.; Juliet, U. S.; Zhang, X.; Samrawit, Y.; George, A.; Peter, B.; Juliana, C.; Adel, A. E. S.; Beatriz, Y. J.; Ji, L.; Kerry, L.; Viswanathan, M.; Lyudmil, N.; Graham, O.; Lorenzo, P.; Marie, A. T.; Sarah, H. W.; Paul, Z.; Bernard, Z. IDF Diabetes Atlas, 7th ed.; International Diabetes Federation, 2015; http://www.diabetesatlas.org.
       

    2. [2]

      Choi, Y. J.; Shin, D.; Lee, J. Y. Arch. Pharm. Res. 2014, 37, 435.  doi: 10.1007/s12272-013-0283-3

    3. [3]

      Itoh, Y.; Kawamata, Y.; Harada, M.; Kobayashi, M.; Fujii, R.; Fukusumi, S.; Ogi, K.; Hosoya, M.; Tanaka, Y.; Uejima, H.; Tanaka, H.; Maruyama, M.; Satoh, R.; Okubo, S.; Kizawa, H.; Komatsu, H.; Matsumura, F.; Noguchi, Y.; Shinohara, T.; Hinuma, S.; Fujisawa, Y.; Fujino, M. Nature 2003, 422, 173.  doi: 10.1038/nature01478

    4. [4]

      Latour, M. G.; Alquier, T.; Oseid, E.; Tremblay, C.; Jetton, T. L.; Luo, J.; Lin, D. C.; Poitout, V. Diabetes 2007, 56, 1087.  doi: 10.2337/db06-1532

    5. [5]

      Lu, H.; Fei, H.; Yang, F.; Zheng, S.; Hu, Q.; Zhang, L.; Yuan, J.; Feng, J.; Sun, P.; Dong, Q. Bioorg. Med. Chem. Lett. 2013, 23, 2920.  doi: 10.1016/j.bmcl.2013.03.060

    6. [6]

      Tikhonova, I. G.; Sum, C. S.; Neumann, S.; Thomas, C. J.; Raaka, B. M.; Costanzi, S.; Gershengorn, M. C. J. Med. Chem. 2007, 50, 2981.  doi: 10.1021/jm0614782

    7. [7]

      Briscoe, C. P.; Tadayyon, M.; Andrews, J. L.; Benson, W. G.; Chambers, J. K.; Eilert, M. M.; Ellis, C.; Elshourbagy, N. A.; Goetz, A. S.; Minnick, D. T.; Murdock, P. R.; Sauls, H. R., Jr.; Shabon, U.; Spinage, L. D.; Strum, J. C.; Szekeres, P. G.; Tan, K. B.; Way, J. M.; Ignar, D. M.; Wilson, S.; Muir, A. I. J. Biol. Chem. 2003, 278, 11303.  doi: 10.1074/jbc.M211495200

    8. [8]

      Shapiro, H.; Shachar, S.; Sekler, I.; Hershfinkel, M.; Walker, M. D. Biochem. Biophys. Res. Commun. 2005, 335, 97.  doi: 10.1016/j.bbrc.2005.07.042

    9. [9]

      Fujiwara, K.; Maekawa, F.; Yada, T. Am. J. Physiol. Endocrinol. Metab. 2005, 289, E670.  doi: 10.1152/ajpendo.00035.2005

    10. [10]

      Tan, C. P.; Feng, Y.; Zhou, Y. P.; Eiermann, G. J.; Petrov, A.; Zhou, C.; Lin, S.; Salituro, G.; Meinke, P.; Mosley, R.; Akiyama, T. E.; Einstein, M.; Kumar, S.; Berger, J. P.; Mills, S. G.; Thornberry, N. A.; Yang, L.; Howard, A. D. Diabetes 2008, 57, 2211.  doi: 10.2337/db08-0130

    11. [11]

      Li, H.; Long Y. Q. Chin. J. Org. Chem. 2016, 36, 736 (in Chinese).

    12. [12]

      Negoro, N.; Sasaki, S.; Mikami, S.; Ito, M.; Suzuki, M.; Tsujihata, Y.; Ito, R.; Harada, A.; Takeuchi, K.; Suzuki, N.; Miyazaki, J.; Santou, T.; Odani, T.; Kanzaki, N.; Funami, M.; Tanaka, T.; Kogame, A.; Matsunaga, S.; Yasuma, T.; Momose, Y. ACS Med. Chem. Lett. 2010, 1, 290.  doi: 10.1021/ml1000855

    13. [13]

      Negoro, N.; Sasaki, S.; Mikami, S.; Ito, M.; Tsujihata, Y.; Ito, R.; Suzuki, M.; Takeuchi, K.; Suzuki, N.; Miyazaki, J.; Santou, T.; Odani, T.; Kanzaki, N.; Funami, M.; Morohashi, A.; Nonaka, M.; Matsunaga, S.; Yasuma, T.; Momose, Y. J. Med. Chem. 2012, 55, 3960.  doi: 10.1021/jm300170m

    14. [14]

      Defossa, E.; Wagner, M. Bioorg. Med. Chem. Lett. 2014, 24, 2991.  doi: 10.1016/j.bmcl.2014.05.019

    15. [15]

      Liu, J. J.; Wang, Y.; Ma, Z.; Schmitt, M.; Zhu, L.; Brown, S. P.; Dransfield, P. J.; Sun, Y.; Sharma, R.; Guo, Q.; Zhuang, R.; Zhang, J.; Luo, J.; Tonn, G. R.; Wong, S.; Swaminath, G.; Medina, J. C.; Lin, D. C.; Houze, J. B. ACS Med. Chem. Lett. 2014, 5, 517.  doi: 10.1021/ml400501x

    16. [16]

      Takano, R.; Yoshida, M.; Inoue, M.; Honda, T.; Nakashima, R.; Matsumoto, K.; Yano, T.; Ogata, T.; Watanabe, N.; Hirouchi, M.; Yoneyama, T.; Ito, S.; Toda, N. ACS Med. Chem. Lett. 2015, 6, 266.  doi: 10.1021/ml500391n

    17. [17]

      Guo, D. Y.; Li, D. W.; Ning, M. M.; Dang, X. Y.; Zhang, L. N.; Zeng, L. M.; Hu, Y. H.; Leng, Y. Biochem. Biophys. Res. Commun. 2015, 466, 740.  doi: 10.1016/j.bbrc.2015.09.130

    18. [18]

      Ma, Z.; Lin, D. C.; Sharma, R.; Liu, J.; Zhu, L.; Li, A. R.; Kohn, T.; Wang, Y.; Liu, J. J.; Bartberger, M. D.; Medina, J. C.; Zhuang, R.; Li, F.; Zhang, J.; Luo, J.; Wong, S.; Tonn, G. R.; Houze, J. B. Bioorg. Med. Chem. Lett. 2016, 26, 15.  doi: 10.1016/j.bmcl.2015.11.050

    19. [19]

      Tanaka, H.; Yoshida, S.; Minoura, H.; Negoro, K.; Shimaya, A.; Shimokawa, T.; Shibasaki, M. Life Sci. 2014, 94, 115.  doi: 10.1016/j.lfs.2013.11.010

    20. [20]

      Sunil, V.; Verma, M. K.; Oommen, A. M.; Sadasivuni, M.; Singh, J.; Vijayraghav, D. N.; Chandravanshi, B.; Shetty, J.; Biswas, S.; Dandu, A.; Moolemath, Y.; Venkataranganna, M. V.; Somesh, B. P.; Jagannath, M. R. BMC Pharmacol. Toxicol. 2014, 15, 19.  doi: 10.1186/2050-6511-15-19

    21. [21]

      Lead GPR40 agonist bites the dust Nat. Rev. Drug Discovery 2014, 13, 91.

    22. [22]

      Srivastava, A.; Yano, J.; Hirozane, Y.; Kefala, G.; Gruswitz, F.; Snell, G.; Lane, W.; Ivetac, A.; Aertgeerts, K.; Nguyen, J.; Jennings, A.; Okada, K. Nature 2014, 513, 124.  doi: 10.1038/nature13494

    23. [23]

      McGarry, J. D.; Dobbins R. L. Diabetologia 1999, 42, 128.  doi: 10.1007/s001250051130

    24. [24]

      Yamano, M.; Goto, M.; Kajiwara, T.; Maeda, H.; Konishi, T.; Sera, M.; Kondp, Y.; Yamasaki, S. WO 2012/111849, 2012[Chem. Abstr. 2012, 157, 410099].

    25. [25]

      Cho, H.; Plapp, B. V. Biochemistry 1998, 37, 4482.  doi: 10.1021/bi9727040

    26. [26]

      Kang, X. S.; Chen, Z. H. WO 2015/024526, 2015[Chem. Abstr. 2015, 162, 353242].

  • 加载中
    1. [1]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    4. [4]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    7. [7]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    8. [8]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    9. [9]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    10. [10]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    11. [11]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    12. [12]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    13. [13]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    14. [14]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    15. [15]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    16. [16]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    17. [17]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

Metrics
  • PDF Downloads(6)
  • Abstract views(1088)
  • HTML views(161)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return