Citation: Chen Liang, Wang Baoqu, Zhao Yucheng, Yan Shengjiao, Lin Jun. One-Pot Synthesis of Multisubstituted Chromone-Fused Bicyclic Pyridine Compounds[J]. Chinese Journal of Organic Chemistry, ;2017, 37(6): 1433-1442. doi: 10.6023/cjoc201612038 shu

One-Pot Synthesis of Multisubstituted Chromone-Fused Bicyclic Pyridine Compounds

  • Corresponding author: Yan Shengjiao, yansj@ynu.edu.cn Lin Jun, linjun@ynu.edu.cn
  • Received Date: 12 December 2016
    Revised Date: 21 January 2017

    Fund Project: the National Natural Science Foundation of China U1202221the Talent Found in Yunnan Province 2012HB001the National Natural Science Foundation of China 21362042the National Natural Science Foundation of China 21662042the National Natural Science Foundation of China 21262042the Excellent Young Talents of Yunnan University XT412003

Figures(1)

  • A concise and environment friendly route for the synthesis of multisubstituted chromone-fused bicyclic pyridine compounds via one-step reaction of chromone-3-carboxaldehyde 1 and N-benzyl nitro ketene aminals (NBNKAs, 2) in ethanol media has been developed. The targeted compounds 3 can efficiently obtain by filter without extra post-treatment. The reaction is particularly attractive due to following features: low-cost and biocompatibility solvent, mild temperature, atom economy, high yields, and potential biological activity.
  • 加载中
    1. [1]

      Hunt, A. J.; Sin, E. H. K.; Marriott, R.; Clark, J. H. CHemSusChem 2010, 3, 306.  doi: 10.1002/cssc.200900169

    2. [2]

      Agana, B. A.; Reeve, D.; Orbell, J. D. J Environ. Manage. 2013, 114, 445.  doi: 10.1016/j.jenvman.2012.10.047

    3. [3]

      Marr, P. C.; Marr, A. C. Green Chem. 2016, 18, 105.  doi: 10.1039/C5GC02277K

    4. [4]

      Marteel-Parrish, A. E. J. Chem. Educ. 2014, 91, 1084.  doi: 10.1021/ed400393b

    5. [5]

      Trost, B. M. Science 1991, 254, 1471.  doi: 10.1126/science.1962206

    6. [6]

      Misono, M. Yuki Gosei Kagaku Kyokaishi 2003, 61, 406.  doi: 10.5059/yukigoseikyokaishi.61.406

    7. [7]

      Hartman, G. J.; Jin, Q. Z.; Collins, G. J.; Lee, K. N.; Ho, C. T.; Chang, S. S. J. Agric. Food Chem. 1983, 31, 1030.  doi: 10.1021/jf00119a027

    8. [8]

      Ren, T.; Liu, W.; Xue, Q.; Wang, H. Lubr. Sci. 1993, 5, 205.  doi: 10.1002/(ISSN)1557-6833

    9. [9]

      Ueda, Y.; Connolly, T. P.; Kadow, J. F.; Meanwell, N. A.; Wang, T.; Chen, C.-P. H.; Yeung, K.-S.; Zhang, Z.; Leahy, D. K.; Pack, S. K.; Soundararajan, N.; Sirard, P.; Levesque, K.; Thoraval, D. US 20050209246, 2005[Chem. Abstr. 2005, 143, 306343].

    10. [10]

      Garuti, L.; Roberti, M.; Pizzirani, D. Mini-Rev. Med. Chem. 2007, 7, 481.  doi: 10.2174/138955707780619626

    11. [11]

      Schultz, C.; Link, A.; Leost, M.; Zaharevitz, D. W.; Gussio, R.; Sausville, E. A.; Meijer, L.; Kunick, C. J. Med. Chem. 1999, 42, 2909.  doi: 10.1021/jm9900570

    12. [12]

      Pluta, K.; Morak-Mlodawska, B.; Jelen, M. Eur. J. Med. Chem. 2011, 46, 3179.  doi: 10.1016/j.ejmech.2011.05.013

    13. [13]

      Sujatha, K.; Shanmugam, P.; Perumal, P. T.; Muralidharan, D.; Rajendran, M. Bioorg. Med. Chem. Lett. 2006, 16, 4893.  doi: 10.1016/j.bmcl.2006.06.059

    14. [14]

      Helal, C. J.; Kang, Z.; Hou, X.; Pandit, J.; Chappie, T. A.; Humphrey, J. M.; Marr, E. S.; Fennell, K. F.; Chenard, L. K.; Fox, C.; Schmidt, C. J.; Williams, R. D.; Chapin, D. S.; Siuciak, J.; Lebel, L.; Menniti, F.; Cianfrogna, J.; Fonseca, K. R.; Nelson, F. R.; O'Connor, R.; MacDougall, M.; McDowell, L.; Liras, S. J. Med. Chem. 2011, 54, 4536.  doi: 10.1021/jm2001508

    15. [15]

      Kim, I. Y.; Kim, S. H. KR 2016006050, 2016[Chem. Abstr. 2016, 164, 225869].

    16. [16]

      Lhassani, M.; Chavignon, O.; Chezal, J.-M.; Teulade, J.-C.; Chapat, J.-P.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E.; Gueiffier, A. Eur. J. Med. Chem. 1999, 34, 271.  doi: 10.1016/S0223-5234(99)80061-0

    17. [17]

      Alcarazo, M.; Roseblade, S. J.; Cowley, A. R.; Fernandez, R.; Brown, J. M.; Lassaletta, J. M. J. Am. Chem. Soc. 2005, 127, 3290.  doi: 10.1021/ja0423769

    18. [18]

      Mizushige, K.; Ueda, T.; Yukiiri, K.; Suzuki, H. Cardiovasc. Drug Rev. 2002, 20, 163.

    19. [19]

      Ankley, G. T.; Kahl, M. D.; Jensen, K. M.; Hornung, M. W.; Korte, J. J.; Makynen, E. A.; Leino, R. L. Toxicol. Sci. 2002, 67, 121.  doi: 10.1093/toxsci/67.1.121

    20. [20]

      Veber, D. F.; Johnson, S. R.; Cheng, H.-Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. J. Med. Chem. 2002, 45, 2615.  doi: 10.1021/jm020017n

    21. [21]

      Bai, D.; Lummis, S. C. R.; Leicht, W.; Breer, H.; Sattelle, D. B. Pestic. Sci. 1991, 33, 197.  doi: 10.1002/ps.v33:2

    22. [22]

      Feng, X.-G.; Liu, X.-W.; Han, Z.-L.; Guan, L.-T.; Xu, L.-Z. J. Qingdao Univ. Sci. Technol., Nat. Sci. Ed. 2012, 33, 381.

    23. [23]

      Li, J.; Huang, T.; Li, L.; Ding, T.; Zhu, H.; Yang, B.; Ye, Q.; Gan, J. J. Agric. Food Chem. 2016, 64, 8109.  doi: 10.1021/acs.jafc.6b03422

    24. [24]

      Tomizawa, M.; Casida, J. E. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 247.  doi: 10.1146/annurev.pharmtox.45.120403.095930

    25. [25]

      Bao, H.; Shao, X.; Zhang, Y.; Deng, Y.; Xu, X.; Liu, Z.; Li, Z. J. Agric. Food Chem. 2016, 64, 5148.  doi: 10.1021/acs.jafc.6b01512

    26. [26]

      Lu, S.; Zhuang, Y.; Wu, N.; Feng, Y.; Cheng, J.; Li, Z.; Chen, J.; Yuan, J.; Xu, X. J. Agric. Food Chem. 2013, 61, 10858.  doi: 10.1021/jf403272h

    27. [27]

      Shao, X.; Xu, Z.; Zhao, X.; Xu, X.; Tao, L.; Li, Z.; Qian, X. J. Agric. Food Chem. 2010, 58, 2690.  doi: 10.1021/jf902513t

    28. [28]

      (a) Huang, Z.; Wang, M. Heterocycles 1994, 37, 1233.
      (b) Kong, L.; Yang, R.; Du, X.; Yan, S.; Lin, J. Chin. J. Org. Chem. 2016, 36, 2437 (in Chinese).
      (孔令斌, 杨瑞霞, 杜璇璇, 严胜骄, 林军, 有机化学, 2016, 36, 2437.)
      (c) Peng, M.; Yang, R.; Liu, X.; Yan, S.; Lin, J. Chin. J. Org. Chem. 2015, 35, 1754 (in Chinese).
      (彭美阳, 杨瑞霞, 刘昔敏, 严胜骄, 林军, 有机化学, 2015, 35, 1754.)

    29. [29]

      (a) Chen, X.-B.; Liu, Z.-C.; Lin, X.-R.; Huang, R.; Yan, S.-J.; Lin, J. ACS Sustainable Chem. Eng. 2014, 2, 2391.
      (b) Luo, D.; Cui, S.; Hu, X.; Yan, S.; Lin, J. Chin. J. Org. Chem. 2017, 37, 166 (in Chinese).
      (罗大云, 崔时胜, 胡兴梅, 林军, 严胜骄, 有机化学, 2017, 37, 166.)

    30. [30]

      Yu, F.-C.; Huang, R.; Ni, H.; Fan, J.; Yan, S.-J.; Lin, J. Green Chem. 2013, 15, 453.  doi: 10.1039/C2GC36552A

    31. [31]

      Chen, X.-B.; Liu, Z.-C.; Yang, L.-F.; Yan, S.-J.; Lin, J. ACS Sustainable Chem. Eng. 2014, 2, 1155.  doi: 10.1021/sc500170d

    32. [32]

      Xiao, X.; Wang, X.; Gui, X.; Chen, L.; Huang, B. Chem. Biodiversity 2016, 11, 1427.

    33. [33]

      Mir, S. A. Int. J. PharmTech Res. 2016, 9, 70.

    34. [34]

      (a) Ding, Z.-W.; Tan, Q.-T.; Liu, B.-X.; Xu, K.; Xu, B. Acta Chim. Sinica 2015, 73, 1302 (in Chinese).
      (丁正伟, 谭启涛, 刘秉新, 张可, 许斌, 化学学报, 2015, 73, 1302.)
      (b) Zhao, J.-B.; Zhang, Q. Acta Chim. Sinica 2015, 73, 1235 (in Chinese).
      (赵金钵, 张前, 化学学报, 2015, 73, 1235.)

    35. [35]

      Alizadeh, A.; Bayat, F.; Zhu, Z. Res. Chem. Intermed. 2016, 42, 5927.  doi: 10.1007/s11164-015-2414-6

    36. [36]

      Yaqub, M.; Perveen, R.; Shafiq, Z.; Pervez, H.; Tahir, M. N. Synlett 2012, 23, 1755.  doi: 10.1055/s-00000083

    37. [37]

      Nishiwaki, H.; Nakagawa, Y.; Takeda, D. Y.; Okazawa, A.; Akamatsu, M.; Miyagawa, H.; Ueno, T.; Nishimura, K. Pest Manage. Sci. 2000, 56, 875.  doi: 10.1002/(ISSN)1526-4998

  • 加载中
    1. [1]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    2. [2]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    3. [3]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    4. [4]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    17. [17]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(8)
  • Abstract views(1292)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return