Citation: Zhang Yue, Zhang Pengtao, Yu Guangli, Li Chunxia. Synthesis of 1, 2-Dihexadecyl-sn-glycero-3-phosphoethanolamine[J]. Chinese Journal of Organic Chemistry, ;2017, 37(6): 1456-1462. doi: 10.6023/cjoc201612034 shu

Synthesis of 1, 2-Dihexadecyl-sn-glycero-3-phosphoethanolamine

  • Corresponding author: Li Chunxia, lchunxia@ouc.edu.cn
  • Received Date: 9 December 2016
    Revised Date: 13 February 2017

    Fund Project: the Special Fund for Marine Scientific Research in the Public Interest 201405038the National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers U1406402

Figures(4)

  • 1, 2-Dihexadecyl-sn-glycero-3-phosphoethanolamine (DHPE) is one type of glycerophospholipids, and it has a wide range of application in biology. A new and efficient method was developed to synthesis DHPE using (S)-2, 2-dimethyl-1, 3-dioxolane-4-methanol, hexadecanol and ethanolamine as starting materials. 1, 2-Dihexadecyl-sn-glycerol and N-Boc-etha-nolamine were synthesized as two key intermediates, which were coupled under condition of Still-Gennari reagent. Then Horner-Wadsworth-Emmons reaction condition was applied to deprotect methyl acetate group of glycerophospholipid efficiently. The target compound DHPE was obtained in 32% overall yield by 8 steps.
  • 磷脂是普遍存在于生物界中的含磷脂类, 是生物细胞膜的构成物质, 也是生命的基础物质之一[1]. 20世纪70年代以来, 随着分子生物学发展, 逐步发现磷脂是众多信息分子前体的储备形式, 同时也是细胞传递信息、合成脂蛋白、代谢脂肪的活性物质, 亦是产生心、脑疾病以及循环、呼吸、生殖等系统疾病的化学媒介[2, 3].磷脂代谢与化学信息分子已成为当今分子生物学、生物医学的前沿研究领域.

    磷脂主要包括含甘油的甘油磷脂和含鞘氨醇的鞘磷脂两大类, 其中甘油磷脂根据分子中脂肪链和甘油的结合形式, 可分为酯型甘油磷脂和醚型甘油磷脂[1], 广泛分布于动物、植物及微生物体内. 1, 2-双十六烷基-3-甘油-磷酸乙醇胺(DHPE)属于醚型甘油磷脂, 由烷基脂肪链、手性甘油骨架和磷酸极性头三部分组成, 其中烷基脂链通过醚键与甘油骨架连接. DHPE类的磷脂多见于细菌膜[4]、心肌质膜[5]、免疫细胞[6]和一些肿瘤细胞中[7].

    近年来, 随着糖芯片技术的蓬勃发展, DHPE及其衍生物广泛应用于拟糖脂糖芯片的制备和糖生物学的研究. Feizi小组[8]利用还原胺化反应将寡糖与DHPE进行偶联制备拟糖脂糖探针(Neoglycolipid), 通过脂链与固体基质之间的疏水作用将寡糖固定在基质表面, 使寡糖以簇的形式展示在基质上, 从而模拟生物体内的糖与蛋白质之间的相互作用. 2000年, Stoll等[9]以DHPE为原料合成了一种带有荧光基团的磷脂N-氨乙酰基-N-(9-蒽甲基)-1, 2双十六烷基-3-甘油-磷酸乙醇胺(ADHP), 用于与寡糖形成荧光拟糖脂糖探针. 2007年, Liu等[10]以DHPE为原料制备了含有胺氧基团的脂试剂AOPE, 通过与寡糖的还原端以肟的形式连接, 能使部分寡糖的还原端单糖残基保持闭环状态.综上所述, DHPE不仅是一些生物膜的重要组成成分, 而且还是糖生物学研究中拟糖脂糖探针以及相关衍生物制备的关键原料.本文对DHPE的合成进行了探索, 建立了一种高效制备DHPE及其相关磷脂的方法.

    1   结果与讨论

    DHPE逆合成分析如Scheme 1所示. DHPE可分为磷脂极性端和长链烷基甘油醇两个部分, 长链烷基甘油醇又可以分为烷基长链部分和甘油骨架部分.利用(S)-(+)-甘油醇缩丙酮1提供手性甘油骨架, 十六烷基醇6提供烷基长链部分, 乙醇胺5提供极性端部分, 通过合适的磷试剂和方法将长链烷基甘油醇9与化合物5两个部分偶联起来即可得到目标化合物DHPE. DHPE合成的难点主要在于如何高效的将这两部分连接起来(Scheme 1).

    图式 1  DHPE的逆合成分析 Scheme1.  Retrosynthesis of DHPE

    1989年, Abdelmageed小组[11]采用POCl3为偶联试剂以较高的产率得到了DHPE, 但是文中关于磷脂偶联的两步关键反应的产率并未提及和计算到总产率中. 1996年, Alcaraz等[12]用POCl3作为偶联剂, 完成了酯型甘油磷脂DPPE的合成, 其中偶联的收率只有50%.当我们尝试采用三氯氧磷试剂将化合物95进行偶联时(Eq. 1), 发现由于三氯氧磷与羟基的反应活性较高, 使得该反应的选择性较差, 会发生磷酰氯同时与多个醇偶联的情况, 导致反应的产率较低, 因此以POCl3为偶联剂通过逐步取代其分子中氯来合成磷酸二酯的方法, 并不是一种行之有效的方法.

    2012年, Song等[13]以2-氯-2-氧-1, 3, 2-二氧磷杂环戊烷为偶联试剂, 与甘油二酯反应生成环磷酸盐中间体, 然后利用NaN3进行开环, 得到相应的酯型甘油磷脂DPPE.但当我们将此法应用于底物9时, 并未能生成相应的环磷酸盐中间体, 推测由于底物的不同, 中间体不稳定, 使此反应未能顺利进行.

    2015年, Sano小组[14]利用Still-Gennari试剂O, O'-双(2, 2, 2-三氟乙基)磷乙酸甲酯通过Horner-Wadsworth-Emmons (HWE)反应高效构建酯型甘油磷脂酸(PA)、磷脂酰乙醇胺(PE)和磷脂酰胆碱(PC). HWE反应是Wittig反应的改进, 反应用稳定的膦酸酯碳负离子, 代替磷叶立德, 与醛、酮反应生成烯烃, 产物主要为E-型烯烃[15, 16], 该反应中产生的二烃磷酸盐通常是作为副产物处理, 但在用于磷脂类化合物的合成中, 则是主要的目标产物.根据此文献, 我们采用HWE反应高效地实现了化合物95偶联, 顺利地制备了目标化合物DHPE.

    我们首先构建DHPE的长链烷基甘油醇9和磷脂的极性头5这两部分.选用商业易得的(S)-(+)-甘油醇缩丙酮(1)作为DHPE的手性甘油骨架(Scheme 2).

    图式 2  化合物95的合成 Scheme2.  Synthesis of compounds 9 and 5

    以化合物(S)-(+)-甘油醇缩丙酮(1)为原料, 苄基保护羟基得到化合物2, 然后脱除2的丙酮叉得到化合物3.当脱丙酮叉反应温度为80 ℃, 溶剂为AcOH/H2O (V:V=8:1) 时, 始终有部分原料未反应.于是对反应的温度, 溶剂AcOH/H2O的比例进行了摸索(表 1), 发现在相同的温度下, 醋酸浓度的降低可以提高反应效率和产率.通过降低酸浓度, 可以在相对低的温度下以较高的产率得到产物.最终确定反应条件为:温度65 ℃, AcOH/H2O (V:V=7:3), 反应时间为2 h, 产率可以达到92%.

    表 1  脱丙酮叉反应条件优化 Table 1.  Optimization of reaction conditions for removal of acetonide group

    十六烷基醇(6)为DHPE提供烷基侧链部分, 十六烷基与手性甘油骨架以醚键的形式连接.用甲磺酰基活化十六烷基醇的羟基, 以95%的收率得到化合物7. 73通过成醚反应以70%的收率顺利得到化合物8, 然后脱除苄基得到9.

    对磷脂的极性头部分5进行合成, 直接使用乙醇胺4通过Boc2O保护氨基得到化合物5 (Scheme 2).

    在顺利地制备了化合物95之后, 通过磷脂试剂将长链烷基甘油醇9与极性端5两个部分偶联起来即可得到目标化合物DHPE.首先将Still-Gennari试剂[17]依次与长链烷基甘油醇9、Boc保护乙醇胺5分步偶联进行醚型甘油磷脂DHPE的合成尝试(Scheme 3).

    图式 3  DHPE的合成策略一 Scheme3.  One strategy of synthesizing DHPE

    化合物9中的羟基在三乙胺或DBU[18, 19]存在的条件下作为亲核试剂与O, O'-双(2, 2, 2-三氟乙基)磷乙酸甲酯反应, 室温下搅拌2 h后生成产物10-1(产率66%), 核磁共振检测结构正确.接着再用10-15反应20 h, 薄层色谱(TLC)检测发现产物点复杂, 有较多的副产物生成, 用硅胶色谱柱分离纯化后, 质谱检测发现目标化合物11-1的分子离子峰, 但核磁共振检测分析发现产物仍含有杂质峰.进一步用凝胶SephadexLH20柱色谱分离纯化样品, 得到了目标产物, 产率只有64%.

    考虑到11-1的合成过程中副产物多产率低, 且不容易分离的问题, 我们又尝试了先用乙醇胺5与Still-Gennari试剂反应生成10-2, 然后再与9反应的策略(Scheme 4).

    图式 4  DHPE的合成策略二 Scheme4.  Another strategy of synthesizing DHPE

    将化合物5与Still-Gennari试剂在室温条件下反应得到10-2, 但发现有双取代的副产物生成(表 2), 导致反应产率不高, 针对这一问题我们对反应的温度和溶剂进行了摸索.发现当反应液中加入分子筛时可以有效提高反应效率, 当反应在0 ℃下进行时可以抑制双取代副产物的生成, 进一步提高反应的产率, 最终以93%的收率得到化合物10-2.

    表 2  10-2的合成条件优化a Table 2.  Optimization of reaction conditions for 10-2

    随后将化合物10-29偶联, 以70%的产率得到化合物11-2.接着在碱性条件下, 将11-2与苯甲醛反应, 利用HWE反应高效的脱去磷脂头上的乙酸甲酯部分, 得到一个羟基裸露的化合物12, 产率为92%, 最后用三氟乙酸(TFA)脱去Boc基团即得到目标化合物DHPE (13), 产率为96% (Scheme 4).

    与采用POCl3策略合成磷脂化合物的方法相比, HWE方法避免了使用剧毒物质POCl3, 同时Still-Gennari试剂与醇反应选择性好, 可以实现与不同的醇逐步进行偶联, 操作简单, 且产率较高.

    2   结论

    本文以(S)-(+)-甘油醇缩丙酮、十六醇、乙醇胺为起始原料, 合成了中间体1, 2-双十六烷基甘油醇和Boc保护乙醇胺, 随后用Still-Gennari试剂将这两部分偶联, 再经过HWE反应脱去羧酸甲酯基团, 脱Boc保护, 通过8步的主线反应, 以32%总收率完成了目标化合物DHPE的全合成.本文利用Still-Gennari试剂和HWE反应建立了一种高效制备DHPE及其相关磷脂的方法, 相较于采用POCl3策略合成磷脂, 本方法具有毒性低, 操作简单, 产率高的优点.同时该方法对于其他磷脂生物分子的合成也具有一定的应用价值.

    3   实验部分

    3.1   仪器与试剂

    电子天平(BSA124S, 赛多利斯科学仪器有限公司); 紫外透射反射分析仪(ZF, 上海康华生化仪器制造有限公司); 旋光值由JASCOP-1020型自动比旋光仪测定; 核磁共振氢谱(1H NMR)和碳谱(13C NMR)在安捷伦DD2-500 (500/125 MHz)核磁共振仪上测定; 质谱采用Micromass EI-4000 (Autospec-Ultima-TOF)或Mariner API-TOF质谱仪测定; 红外光谱由NEXUE470红外光谱仪测定; 熔点由WRS-1B数字熔点仪测定.

    实验所用的试剂均为国产分析纯试剂.实验所用的二氯甲烷溶剂使用前经氢化钙回流重蒸处理; 四氢呋喃在钠丝和二苯甲酮存在下, 回流至体系变为蓝色后蒸出使用; 薄层硅胶板(HSGF 254, 烟台市化学工业研究所); 硅胶(200~300目, 青岛海洋化工厂).

    3.2   实验方法

    3.2.10   叔丁基(2-((((R)-2, 3-(十六烷氧基)丙氧基)(羟基)磷酰基)氧)乙基)氨基甲酸酯(12)的合成

    取化合物11-2 (70 mg, 0.085 mmol)溶于1.5 mL的THF中, 冰浴条件下加入六甲基二硅基胺基锂(LHMDS) (102 μL, 0.102 mmol), 搅拌30 min后再加入苯甲醛(10.8 mg, 0.102 mmol), 室温下反应, 反应2 h后TLC检测反应完全, 向反应液中加入1 mL的1 mol/L HCl溶液, 然后用二氯甲烷萃取(5 mL×3), 合并有机相, 饱和NaCl溶液洗(5 mL), 无水Na2SO4干燥, 硅胶柱层析[V(二氯甲烷):V(甲醇)=12:1], 得到淡黄色粘稠液60 mg, 产率92%. [α]D20+2.12 (c 0.57, CHCl3); 1H NMR (500 MHz, CDCl3) δ: 3.95 (s, 4H, OCH2CH2NH, OCH2CH), 3.64~3.46 (m, 5H, OCH2, OCH), 3.42~3.38 (m, 2H, 2×OCH2), 3.36 (s, 2H, NHCH2), 1.54 (s, 4H, 2CH2), 1.43 (s, 9H, 3CH3), 1.34~1.21 (m, 52H, 26CH2), 0.88 (t, J=6.8 Hz, 2CH3); 13C NMR (125 MHz, CDCl3) δ: 77.8, 71.7, 70.5, 65.0, 41.1, 31.9, 30.0, 29.7, 29.7, 29.7, 29.6, 29.3, 28.4, 26.1, 22.6, 14.09; IR (KBr) ν: 3389, 2923, 2853, 1716, 1518, 1466, 1243, 1175, 1111, 1063 cm-1; HR-ESI-MS calcd for C42H85NO8P[M-H] 762.6018, found 762.5997.

    3.2.9   甲基2-(((R)-2, 3-(十六烷氧集)丙氧基)(2-((二碳酸二叔丁酯)氨基)乙氧基)磷酰基)醋酸盐(11-2)的合成

    取化合物10-2 (130 mg, 0.343 mmol)溶于4 mL甲苯溶液中, 再将化合物9 (204 mg, 0.377 mmol)加入到反应液中, 最后加入4Å分子筛和DBU (52 mg, 0.343 mmol), 60 ℃下反应48 h, TLC [V(乙酸乙酯):V(石油醚)=1:1]检测原料基本反应完全.用硅藻土滤去分子筛, 向反应液中加入2 mL 1 mol/L HCl溶液, 用二氯甲烷萃取(5 mL×3), 合并有机相, 饱和NaCl溶液洗(5 mL), 无水Na2SO4干燥, 硅胶柱层析[V(乙酸乙酯):V(石油醚)=1:2], 得到透明粘稠状液体198 mg, 产率为70%. [α]25 D-2.24 (c 0.49, CHCl3); 1H NMR (500 MHz, CDCl3)δ: 5.29 (brs, 1H, NH), 4.31~4.05 (m, 4H, OCH2CH2NH, OCH2CH), 3.75 (s, 3H, OCH3), 3.63~3.50 (m, 3H, OCH2, OCH), 3.51~3.45 (m, 2H, OCH2), 3.43~3.41 (m, 4H, NHCH2, OCH2), 3.04 (dd, J=21.7, 15.0 Hz, 2H, CH2P=O), 1.55 (s, 4H, 2CH2), 1.45 (s, 9H, 3CH3), 1.32~1.19 (m, 52H, 26CH2), 0.88 (t, J=6.9 Hz, 6H, 2CH3); 13C NMR (125 MHz, CDCl3) δ: 166.1 (d, J=5.7 Hz, C=O), 155.8 (NHC=O), 79.4, 77.1, 71.8, 70.6, 69.3, 66.1, 52.6, 41.0, 33.8 (d, J=137.0 Hz, CH2P=O), 31.9, 29.9, 29.7~29.5 (m), 29.4, 29.3, 28.3, 26.0, 22.6, 14.0; IR (KBr) ν: 3367, 2928, 2853, 1745, 1716, 1510, 1460, 1269, 1173, 1116, 1022 cm-1; HR-ESI-MS calcd for C45H91NO9P [M+H]+ 820.6426, found 820.6443.

    3.2.3   十六烷基甲磺酸酯(7)的合成

    化合物6 (5.00 g, 20.6 mmol)溶于100 mL CH2Cl2中, 氮气保护下加入三乙胺(4.3 mL, 30.9 mmol), 4-二甲氨基吡啶(DMAP) (cat.), 冰浴条件下加入MsCl (1.9 mL, 24.7 mmol), 0 ℃反应30 min后, 室温反应3 h, TLC检测反应完全. 100 mL二氯甲烷稀释反应液, 依次用饱和碳酸氢钠溶液(60 mL×2), 饱和食盐水(60 mL×2) 洗, 无水硫酸钠干燥有机相, 过滤, 减压蒸干, 得到粗品.用石油醚重结晶后得到白色鳞片状结晶6.27 g, 收率95%. m.p. 52~52.5 ℃(文献值[21] 54~55 ℃); 1H NMR (500 MHz, CDCl3) δ: 4.22 (t, J=6.6 Hz, 2H, OCH2), 3.00 (s, 3H, OSO2CH3), 1.71~1.78 (m, 2H, OCH2CH2), 1.44~1.34 (m, 2H, CH2), 1.25 (s, 24H, 12CH2), 0.88 (t, J=6.6 Hz, 3H, CH3); 13C NMR (125 MHz, CDCl3) δ: 70.18, 37.36, 31.91, 29.67~29.63 (5C), 29.59, 29.50, 29.40, 29.34, 29.12, 29.02, 25.41, 22.67, 14.10.

    3.2.6   (R)-1, 2-双十六烷基甘油醇(9)的合成

    化合物8 (60 mg, 95 μmol)溶于10 mL CH2Cl2/ CH3OH (V:V=1:1) 溶液中, 加入10%钯碳(6 mg, 10% 8 in weight), 氢气氛围下室温反应12 h. TLC检测反应完全, 硅藻土助滤, 滤液浓缩后, 硅胶柱层析[V(乙酸乙酯):V(石油醚)=1:20~1:10洗脱), 得到白色固体47 mg, 收率92%. m.p. 48.5~49.6 ℃(文献值[11] 48.7~49.4 ℃); [α]D20-6.72 (c 0.69, CHCl3)[文献值[11] [α]D20 -8.0 (c 7.5, CHCl3)]; 1H NMR (500 MHz, CDCl3) δ: 3.76~3.68 (m, 1H, CH), 3.65~3.39 (m, 8H, 4×OCH2), 2.19 (s, 1H, OH), 1.62~1.49 (m, 4H, 2CH2), 1.36~1.21 (m, 52H, 26CH2), 0.88 (t, J=6.8 Hz, 6H, 2CH3); 13C NMR (125 MHz, CDCl3) δ: 78.23, 71.85, 70.91, 70.39, 63.11, 31.92, 30.07, 29.69, 29.68, 29.67, 29.65, 29.61, 29.60, 29.47, 29.35, 26.09, 22.68, 14.10. HR-ESI-MS calcd for C35H72O3Na [M+Na]+ 563.5374, found 563.5364.

    3.2.7   甲基2-(((R)-2, 3-(十六烷氧基)丙氧基)(2, 2, 2-三氟乙氧基)磷酰基)醋酸盐(10-1)的合成

    取干燥的甲苯试剂2 mL置于反应瓶中, 加入Still-Gennari试剂(64.57 mg, 0.203 mmol), 再加入化合物9 (100 mg, 0.184 mmol)和100 mg的4 Å分子筛, 最后加入DBU (30.88 mg, 0.203 mmol), 室温下搅拌反应2h后TLC检测, 原料基本反应完全.滤去分子筛, 加入5 mL的DCM稀释反应液后再加入1 mol/L HCl 1 mL, 然后用DCM (5 mL×3) 萃取, 无水Na2SO4干燥, 减压蒸除溶剂, 硅胶柱层析[V((乙酸乙酯):V(石油醚)=1:7], 得到透明粘稠液90 mg, 产率66%. 1H NMR (500 MHz, CDCl3) δ: 4.54~4.39 (m, 2H, OCH2CF3), 4.32~4.23 (m, 1H, OCHa), 4.18~4.09 (m, 1H, OCHb), 3.75 (s, 3H, OCH3), 3.61~3.50 (m, 3H, OCH2, OCH), 3.47 (t, J=5.5 Hz, 2H, OCH2), 3.42 (t, J=6.7 Hz, 2H, OCH2), 3.08 (d, J=21.5 Hz, 2H, CH2P=O), 1.57~1.50 (m, 4H, 2CH2), 1.34~1.21 (m, 52H, 26CH2), 0.87 (t, J=6.9 Hz, 6H, 2CH3).

    3.2.1   (S)-4-苄氧基甲基-2, 2-二甲基-1, 3-二氧戊环(2)的合成

    化合物1 (10.00 g, 75.7 mmol)溶于80 mL N, N'-二甲基甲酰胺(DMF)中, 氮气保护, 冰浴条件下加入NaH (60%, 4.5 g, 113 mmol), 0 ℃搅拌10 min, 室温下搅拌30 min, 冰浴条件下加入BnBr (9.9 ml, 83.2 mmol), 0 ℃反应30 min后, 室温下搅拌反应8 h. TLC检测反应完全, 加入甲醇淬灭反应.减压蒸出大部分DMF, 100 mL水稀释浓缩物, CH2Cl2萃取(60 mL×2), 合并有机相, 饱和食盐水洗1次, 无水硫酸钠干燥有机相.过滤, 浓缩, 硅胶柱层析[V(乙酸乙酯):V(石油醚)=1:20~1:10]得黄色油状物14.85 g, 产率88%. [+18.1 (c 0.85, CHCl3)[文献值[20] [α]D20+21.9 (c 1, CHCl3)]; 1H NMR (500 MHz, CDCl3) δ: 7.38~7.25 (m, 5H, ArH), 4.54~4.61 (m, 2H, PhCH2O), 4.27~4.33 (m, 1H, OCH), 4.06 (dd, J=8.3, 6.4 Hz, 1H, CHCHaO), 3.75 (dd, J=8.3, 6.3 Hz, 1H, CHCHbO), 3.56 (dd, J=9.8, 5.7 Hz, 1H, CHCHaOBn), 3.48 (dd, J=9.7, 5.6 Hz, 1H, CHCHbOBn), 1.42 (s, 3H, CH3), 1.37 (s, 3H, CH3); 13C NMR (125 MHz, CDCl3) δ: 137.95, 128.39, 127.72 (2C), 127.70 (2C), 109.39, 74.73, 73.51, 71.08, 66.87, 26.76, 25.38; ESI-MS m/z: 245.2 [M+Na]+.

    3.2.2   (R)-3-(苄氧基)丙烷-1, 2-二醇(3)的合成

    化合物2 (2.0 g, 9.0 mmol)溶于20 mL乙酸/水(V: V=7:3) 溶液中, 65 ℃反应2 h, TLC检测反应完全, 减压蒸出溶剂, 硅胶柱层析[V(乙酸乙酯):V(石油醚)=1:2~1:1], 得无色油状物1.51 g, 收率92%. [α]D20+1.39 (c 0.38, CHCl3)[文献值[20] [α]D20+5.9 (c 1, CHCl3)]; 1H NMR (500 MHz, CDCl3) δ: 7.38~7.24 (m, 5H, ArH), 4.53 (s, 2H, PhCH2O), 3.91~3.85 (m, 1H, OCH), 3.70~3.58 (m, 2H, OCH2), 3.57~3.47 (m, 2H, OCH2), 2.72 (s, 2H, OH); ESI-MS m/z: 205.1 [M+Na]+.

    3.2.4   (R)-1, 2-双十六烷基-3-O-苯基甘油醇(8)的合成

    化合物3 (400 mg, 2.20 mmol)溶于10 mL干燥的DMF中, 氮气保护, 冰浴条件下加入NaH (60%, 263 mg, 6.60 mmol)冰浴搅拌30 min后, 室温反应30 min, 冰浴条件下加入化合物7 (1.55 g, 4.84 mmol), 0 ℃搅拌1 h后, 室温反应10 h, TLC检测反应完全.冰浴条件下加水淬灭反应, 减压蒸出大部分溶剂, 浓缩物中加10 mL水, 用二氯甲烷萃取(3 mL×3), 合并有机相, 饱和食盐水洗(5 mL×2), 无水硫酸钠干燥有机相, 过滤, 浓缩, 硅胶柱层析(石油醚洗脱), 得到白色固体893 mg, 收率65%. m.p. 27.6~28.4 ℃; [α]D20-0.09 (c 0.53, CHCl3)[文献值[11] [α]D20-0.088 (c 5.7, CHCl3)]; 1H NMR (500 MHz, CDCl3) δ: 7.27~7.34 (m, 5H, ArH), 4.55 (s, 2H, PhCH2O), 3.40~3.60 (m, 9H, 4×OCH2, OCH), 1.20~1.36 (m, 56H, 28CH2), 0.88 (t, J=6.7Hz, 6H, 2CH3); 13C NMR (125 MHz, CDCl3) δ: 138.43, 128.27 (2C), 127.55 (2C), 127.43, 77.91, 73.34, 71.65, 70.73, 70.60, 70.30, 31.91 (2C), 30.09 (2C), 29.63~29.64 (16C), 29.49 (2C), 29.35 (2C), 26.12 (2C), 22.67 (2C), 14.10 (2C). HR-ESI-MS calcd for C42H82O3N[M+NH4]+648.6289, found 648.6282.

    3.2.8   甲基2-((2-((二碳酸二叔丁酯)氨基)乙氧基)(2, 2, 2-三氟乙氧基)磷酰基)醋酸盐(10-2)的合成

    取化合物5 (60 mg, 0.372 mmol)溶于4 mL甲苯溶剂中, 冰浴条件下将Still-Gennari试剂(141 mg, 0.446 mmol)加入到反应液中, 最后加入4 Å分子筛和DBU (56.6 mg, 0.372 mmol)加到反应液中, 0 ℃下反应4 h, 原料基本反应完全.加入1 mL的1 mol/L HCl溶液, 用乙酸乙酯萃取(5 mL×3), 合并有机相, 饱和NaCl溶液洗(5 mL), 无水Na2SO4干燥, 减压蒸除溶剂, 硅胶柱层析[V((乙酸乙酯):V(石油醚)=1:2], 得到透明粘稠液130 mg, 产率为93%. 1H NMR (500 MHz, CDCl3) δ: 5.07 (brs, 1H, NH), 4.51~4.40 (m, 2H, OCH2CF3), 4.26~4.10 (m, 2H, OCH2), 3.77 (s, 3H, OCH3), 3.48~3.36 (m, 2H, NHCH2), 3.08 (dd, J=21.4, 1.4 Hz, 2H, CH2P=O), 1.44 (s, 9H, 3CH3). 13C NMR (125 MHz, CDCl3) δ: 165.5 (d, J=5.2 Hz, C=O), 155.7 (NHC=O), 122.6 (dd, J=277.4, 8.0Hz, CF3), 79.7 (OC(CH3)), 66.5 (OCH2), 62.8 (qd, J=37.7, 5.1 Hz, CF3CH2), 52.8 (OCH3), 40.8 (NHCH2), 33.7 (d, J=141.2 Hz, CH2P=O), 28.3 (OC(CH3)); IR (KBr) ν: 3342, 2978, 2934, 1743, 1712, 1521, 1274, 1174, 1093, 1038 cm-1; HR-ESI-MS calcd for C12H22F3NO7P[M+H]+ 380.1080, found 380.1091.

    3.2.5   叔丁基(2-羟乙基)氨基甲酸酯(5)的合成

    化合物4 (2.00 g, 32.7 mmol)溶于25 mL二氯甲烷中, 氮气保护, 冰浴条件下加入二碳酸二叔丁酯(Boc)2O (7.80 g, 36.0 mmol), 0 ℃反应2 h, 室温反应2 h. TLC检测反应完全, 二氯甲烷稀释反应液, 依次用饱和碳酸氢钠洗(10 mL×2), 饱和食盐水洗(10 mL×2), 无水硫酸钠干燥有机相, 过滤, 减压蒸干, 干燥, 得到淡黄色油状物4.89 g, 收率93%. 1H NMR (500 MHz, CDCl3) δ: 5.06~4.87 (m, 1H, NH), 3.76~3.63 (m, 2H, OCH2CH2N), 3.35~3.21 (m, 2H, OCH2CH2N), 2.49 (s, 1H, OH), 1.44 (s, 9H, 3CH3); 13C NMR (125 MHz, CDCl3) δ: 156.83, 79.69, 62.70, 43.17, 31.19, 28.35; ESI-MS m/z: 184.1 [M+Na]+.

    3.2.11   2-氨乙基((R)-2, 3-(十六烷氧基)丙基)磷酸氢盐(13)的合成

    取化合物12 (30 mg, 0.039 mmol)溶于1 mL干燥的二氯甲烷溶液中, 冰浴条件下加入0.5 mL的TFA, 室温下反应0.5 h, TLC检测原料基本反应完全, 加入饱和NaHCO3溶液, 氯仿萃取(5 mL×3), 合并有机相, 无水Na2SO4干燥, 硅胶柱层析[V(二氯甲烷):V(甲醇):V(水)=60:30:4], 得到白色固体25 mg, 产率96%. m.p. 182.5~184 ℃(文献值[11] 182~184 ℃); [α]D20+1.68 [c 0.37, V(CHCl3):V(MeOH)=1:1] [文献值[11] [α]D20+2.2 (c 0.58, V(CHCl3):V(MeOH):V(H2O)=60:30:4)]; 1H NMR (500 MHz, CDCl3/CD3OD) δ: 4.10~4.02 (m, 2H, OCH2), 3.96~3.86 (m, 2H, OCH2), 3.69~3.55 (m, 4H, 2OCH2), 3.53~3.43 (m, 3H, OCH, OCH2), 3.13~3.04 (m, 2H, NH2CH2), 1.62~1.52 (m, 4H, 2CH2), 1.37~1.24 (m, 52H, 26CH2), 0.89 (t, J=6.8 Hz, 6H, 2CH3); 13C NMR (125 MHz, CDCl3/CD3OD)δ: 77.8, 71.7, 70.5, 70.3, 65.0, 61.4, 40.4, 31.7, 29.8, 29.5, 29.4, 29.4, 29.3, 29.1, 25.9, 25.8, 22.4, 13.57. HR-ESI-MS calcd for C37H77NO6P[M-H] 662.5494, found 662.5495.

    辅助材料(Supporting Information) 化合物3, 10-11H NMR谱图, 以及化合物2, 5, 7~131H NMR和13C NMR谱图.这些材料可以免费从本刊网站(http://sioc-journal.cn/)上下载.

    1. [1]

      Han, L.; Li, Z. M.; Guo, W. M. Chem Bull. 2005, 68, 408 (in Chinese).

    2. [2]

      Caputto, B. L.; Guido, M. E. Biochim. Biophys. Acta 2002, 1583, 1.  doi: 10.1016/S1388-1981(02)00209-3

    3. [3]

      Navab, M. J. Lipid. R. 2004, 45, 993.  doi: 10.1194/jlr.R400001-JLR200

    4. [4]

      Snyder, F. Biochem. Lipids. Membr. 1991, 20, 271.

    5. [5]

      Diagne, A.; Fauvel, J.; Record, M.; Chap, H.; Douste-Blazy, L. Biochim. Biophys. Acta 1984, 793, 221.  doi: 10.1016/0005-2760(84)90324-2

    6. [6]

      Mueller, H. W.; O' Flaherty, J. T.; Wykle, R. L. Lipids 1982, 17, 72.  doi: 10.1007/BF02535178

    7. [7]

      Record, M.; Tamer, A.; Chap, H.; Douste-Blazy, L. Biochim. Biophys. Acta 1984, 778, 449.  doi: 10.1016/0005-2736(84)90393-6

    8. [8]

      Fukui, S.; Feizi, T.; Galustian, C.; Lawson, A. M.; Chai, W. Nat. Biotechnol. 2002, 20, 1011.  doi: 10.1038/nbt735

    9. [9]

      Stoll, M. S.; Feizi, T.; Loveless, R. W.; Chai, W.; Lawson, A. M.; Yuen, C. T. Eur. J. Biochem. 2000, 267, 1795.  doi: 10.1046/j.1432-1327.2000.01178.x

    10. [10]

      Liu, Y.; Feizi, T.; Campanero-Rhodes, M. A.; Childs, R. A.; Zhang, Y. Chem. Biol. 2007, 14, 847.  doi: 10.1016/j.chembiol.2007.06.009

    11. [11]

      Abdelmageed, O. H.; Duclos, R. I.; Griffin, R, G.; Siminovitch, D. J.; Ruocco, M. J.; Makriyannis, A. Chem. Phys. Lipids 1989, 50, 163.  doi: 10.1016/0009-3084(89)90040-6

    12. [12]

      Alcaraz, M.; Peng, L.; Klotz, P.; Goeldner, M. J. Org. Chem. 1996, 61, 192.  doi: 10.1021/jo951350k

    13. [13]

      Song, Y.; Yuan, W.; Luo, Y.; Lu, W. Chin. Chem. Lett. 2012, 23, 154.  doi: 10.1016/j.cclet.2011.10.020

    14. [14]

      Sano, S.; Sumiyoshi, H.; Handa, A.; Tokizane, R.; Nakao, M. Tetrahedron Lett. 2015, 56, 4686.  doi: 10.1016/j.tetlet.2015.06.033

    15. [15]

      Bisceglia, A. R.; Orelli, L. Curr. Org. Chem. 2012, 16, 2206.  doi: 10.2174/138527212803520227

    16. [16]

      Al Jasem, Y.; El-Esawi, R.; Thiemann, T. J. Chem. Res. 2014, 38, 453.  doi: 10.3184/174751914X14044684705710

    17. [17]

      Messik, F.; Oberthür, M. Synthesis. 2013, 45, 167.

    18. [18]

      Sano, S.; Kujime, E.; Takemoto, Y.; Shiro, M.; Nagao, Y. Chem. Pharm. Bull. 2005, 53, 131.  doi: 10.1248/cpb.53.131

    19. [19]

      Sano, S.; Takemoto, Y.; Nagao, Y. ARKIVOC 2003, 8, 93.

    20. [20]

      Casati, S.; Ciuffreda, P.; Santaniello, E. Tetrahedron 2011, 22, 658.  doi: 10.1016/j.tetasy.2011.04.003

    21. [21]

      Wawzonek, S.; Klimstra, P. D.; Kallio, R. E. J. Org. Chem. 1960, 25, 621.  doi: 10.1021/jo01074a037

    1. [1]

      Han, L.; Li, Z. M.; Guo, W. M. Chem Bull. 2005, 68, 408 (in Chinese).

    2. [2]

      Caputto, B. L.; Guido, M. E. Biochim. Biophys. Acta 2002, 1583, 1.  doi: 10.1016/S1388-1981(02)00209-3

    3. [3]

      Navab, M. J. Lipid. R. 2004, 45, 993.  doi: 10.1194/jlr.R400001-JLR200

    4. [4]

      Snyder, F. Biochem. Lipids. Membr. 1991, 20, 271.

    5. [5]

      Diagne, A.; Fauvel, J.; Record, M.; Chap, H.; Douste-Blazy, L. Biochim. Biophys. Acta 1984, 793, 221.  doi: 10.1016/0005-2760(84)90324-2

    6. [6]

      Mueller, H. W.; O' Flaherty, J. T.; Wykle, R. L. Lipids 1982, 17, 72.  doi: 10.1007/BF02535178

    7. [7]

      Record, M.; Tamer, A.; Chap, H.; Douste-Blazy, L. Biochim. Biophys. Acta 1984, 778, 449.  doi: 10.1016/0005-2736(84)90393-6

    8. [8]

      Fukui, S.; Feizi, T.; Galustian, C.; Lawson, A. M.; Chai, W. Nat. Biotechnol. 2002, 20, 1011.  doi: 10.1038/nbt735

    9. [9]

      Stoll, M. S.; Feizi, T.; Loveless, R. W.; Chai, W.; Lawson, A. M.; Yuen, C. T. Eur. J. Biochem. 2000, 267, 1795.  doi: 10.1046/j.1432-1327.2000.01178.x

    10. [10]

      Liu, Y.; Feizi, T.; Campanero-Rhodes, M. A.; Childs, R. A.; Zhang, Y. Chem. Biol. 2007, 14, 847.  doi: 10.1016/j.chembiol.2007.06.009

    11. [11]

      Abdelmageed, O. H.; Duclos, R. I.; Griffin, R, G.; Siminovitch, D. J.; Ruocco, M. J.; Makriyannis, A. Chem. Phys. Lipids 1989, 50, 163.  doi: 10.1016/0009-3084(89)90040-6

    12. [12]

      Alcaraz, M.; Peng, L.; Klotz, P.; Goeldner, M. J. Org. Chem. 1996, 61, 192.  doi: 10.1021/jo951350k

    13. [13]

      Song, Y.; Yuan, W.; Luo, Y.; Lu, W. Chin. Chem. Lett. 2012, 23, 154.  doi: 10.1016/j.cclet.2011.10.020

    14. [14]

      Sano, S.; Sumiyoshi, H.; Handa, A.; Tokizane, R.; Nakao, M. Tetrahedron Lett. 2015, 56, 4686.  doi: 10.1016/j.tetlet.2015.06.033

    15. [15]

      Bisceglia, A. R.; Orelli, L. Curr. Org. Chem. 2012, 16, 2206.  doi: 10.2174/138527212803520227

    16. [16]

      Al Jasem, Y.; El-Esawi, R.; Thiemann, T. J. Chem. Res. 2014, 38, 453.  doi: 10.3184/174751914X14044684705710

    17. [17]

      Messik, F.; Oberthür, M. Synthesis. 2013, 45, 167.

    18. [18]

      Sano, S.; Kujime, E.; Takemoto, Y.; Shiro, M.; Nagao, Y. Chem. Pharm. Bull. 2005, 53, 131.  doi: 10.1248/cpb.53.131

    19. [19]

      Sano, S.; Takemoto, Y.; Nagao, Y. ARKIVOC 2003, 8, 93.

    20. [20]

      Casati, S.; Ciuffreda, P.; Santaniello, E. Tetrahedron 2011, 22, 658.  doi: 10.1016/j.tetasy.2011.04.003

    21. [21]

      Wawzonek, S.; Klimstra, P. D.; Kallio, R. E. J. Org. Chem. 1960, 25, 621.  doi: 10.1021/jo01074a037

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Yayue WangHaojie YangJie LiQiao KongSiming ZhouHongbao SunLili PanQiyong GongPing FengHaoxing Wu . A biocompatible Horner-Wadsworth-Emmons (HWE) reaction triggered by a bioorthogonal proximity-induced platform. Chinese Chemical Letters, 2024, 35(8): 109226-. doi: 10.1016/j.cclet.2023.109226

    5. [5]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    6. [6]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    7. [7]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    8. [8]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    9. [9]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    12. [12]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    13. [13]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    14. [14]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    15. [15]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    16. [16]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    17. [17]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    18. [18]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

Metrics
  • PDF Downloads(10)
  • Abstract views(1870)
  • HTML views(208)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return