Citation: Yao Huan, Sun Jiaonan, Ke Hua, Yang Liupan, Li Jiarong, Jiang Wei. Synthesis of Bis-naphthalene and Their Derivatives and Their Complexation with Organic Cation[J]. Chinese Journal of Organic Chemistry, ;2017, 37(3): 603-607. doi: 10.6023/cjoc201612033 shu

Synthesis of Bis-naphthalene and Their Derivatives and Their Complexation with Organic Cation

  • Corresponding author: Li Jiarong, jrli@bit.edu.cn Jiang Wei, jiangw@sustc.edu.cn
  • Received Date: 8 December 2016
    Revised Date: 27 December 2016

    Fund Project: Project supported by the National Natural Science Foundation of China 21572097Project supported by the National Natural Science Foundation of China 21302090

Figures(5)

  • In this research, the structure of the bis-naphthalene molecular resulting from 2-naphthol and 1, 1, 1', 1'-tetramethoxypropane was modified, and six derivatives with different substituents, sidewalls or bridges were synthesized. Their structures were studied by X-ray crystallography and molecular modelling, and all possess curved architectures. Electrostatic potential energy surfaces show that their inner cavities are electron-rich, and may complex with organic cations through cation-π interactions. Their binding stoichiometry and association constants with the 1, 4-diazabicyclo[2.2.2]octane (DABCO)-based organic cation were studied by 1H NMR titration and Job's plot. The results show that electron-rich molecules have much stronger association, and reducing the carbon atom in the bridge significantly decreases their association ability. These novel curved structures may work as building blocks for the construction of new macrocyclic receptors.
  • 加载中
    1. [1]

      (a) Tian, J.; Chen, L.; Zhang, D. W.; Liu, Y.; Li, Z. T. Chem. Commun. 2016, 52, 6351.
      (b) Chi, X.; Yu, G.; Shao, L.; Chen, J.; Huang, F. J. Am. Chem. Soc. 2016, 138, 3168.
      (c) Gao, B.; Tan, L. L.; Song, N.; Li, K.; Yang, Y. W. Chem. Commun. 2016, 52, 5804.
      (d) Zhang, W.; Zhang, Y. M.; Li, S. H.; Cui, Y. L.; Yu, J.; Liu, Y. Angew. Chem., Int. Ed. 2016, 128, 11624.
      (e) Ma, J.; Meng, Q.; Hu, X.; Li, B.; Ma, S.; Hu, B.; Li, C. Org. Lett. 2016, 18, 5740.
      (f) Chen, H.; Fan, J.; Hu, X.; Ma, J.; Wang, S.; Li, J.; Li, C. Chem. Sci. 2015, 6, 197.
      (g) Wang, X.; Han, K.; Li, J.; Jia, X.; Li, C. Polym. Chem. 2013, 4, 3998.
      (h) Wang, Y.; Ping, G.; Li, C. Chem. Commun. 2016, 52, 9858.

    2. [2]

      (a) Zhou, C. E.; Zhao, Z. G.; Tang, X. L. Chin. J. Org. Chem. 2007, 27, 513 (in Chinese).
      (周彩娥, 赵志刚, 唐晓丽, 有机化学, 2007, 27, 513.)
      (b) Peng, Y.; Mou, Q. M.; Yang, Z. X.; Chen, S. H. Chin. J. Org. Chem. 2004, 24, 399 (in Chinese).
      (彭游, 牟其明, 杨祖幸, 陈淑华, 有机化学, 2004, 24, 399.) 

    3. [3]

      (a) Rebek, J. Science 1987, 235, 1478.
      (b) Rebek, J. Pure Appl. Chem. 1989, 61, 1517.

    4. [4]

      Harmata, M. Acc. Chem. Res. 2004, 37, 862.  doi: 10.1021/ar030164v

    5. [5]

      Dolenský, B.; Havlík, M.; Král, V. Chem. Soc. Rev. 2012, 41, 3839.  doi: 10.1039/c2cs15307f

    6. [6]

      (a) Han, T.; Chen, C. F. Org. Lett. 2006, 8, 1069.
      (b) Chen, C. F. Chem. Commun. 2011, 47, 1674.
      (c) Jiang, Y.; Chen, C. F. Eur. J. Org. Chem. 2011, 32, 6377.
      (d) Meng, Z.; Han, Y.; Wang, L. N.; Xiang, J. F.; He, S. G.; Chen, C. F. J. Am. Chem. Soc. 2015, 137, 9739.

    7. [7]

      Yang, L. P.; Liu, W. E.; Jiang, W. Tetrahedron Lett. 2016, 57, 3978.  doi: 10.1016/j.tetlet.2016.07.077

    8. [8]

      (a) Jia, F.; He, Z.; Yang, L. P.; Pan, Z. S.; Yi, M.; Jiang, R. W.; Jiang, W. Chem. Sci. 2015, 6, 6731.
      (b) Jia, F.; Wang, H. Y.; Li, D. H.; Yang, L. P.; Jiang, W. Chem. Commun. 2016, 52, 5666.
      (c) Jia, F.; Li, D. H.; Yang, T. L.; Yang, L. Pan.; Dang, L.; Jiang, W. Chem. Commun. 2017, 53, 336.
      (d) Yang, L. P.; Jia, F.; Zhou, Q. H.; Pan, F.; Sun, J. N.; Rissanen, K.; Chung, L. W.; Jiang, W. Chem.-Eur. J. 2017, 23, 1516.

    9. [9]

      He, Z.; Yang, X.; Jiang, W. Org. Lett. 2015, 17, 3880.  doi: 10.1021/acs.orglett.5b01871

    10. [10]

      (a) He, Z.; Ye, G.; Jiang, W. Chem. Eur. J. 2015, 21, 3005.
      (b) Huang, G. B.; Jiang, W. Prog. Chem. 2015, 27, 744 (in Chinese).
      (黄国宝, 蒋伟, 化学进展, 2015, 27, 744.)

    11. [11]

      (a) Huang, G.; He, Z.; Cai, C. X.; Pan, F.; Yang, D.; Rissanen, K.; Jiang, W. Chem. Commun. 2015, 51, 15490.
      (b) Huang, G.; Valkonen, A.; Rissanen, K.; Jiang, W. Chem. Commun. 2016, 52, 9078.

    12. [12]

      Huang, G. B.; Wang, S. H.; Ke, H.; Yang, L. P.; Jiang, W. J. Am. Chem. Soc. 2016, 138, 14550.  doi: 10.1021/jacs.6b09472

    13. [13]

      Van Allan, J. A.; Giannini, D. D.; Whitesides, T. H. J. Am. Chem. Soc. 1982, 47, 820.

    14. [14]

      Shorthill, B. J.; Avetta, C. T.; Glass, T. E. J. Am. Chem. Soc. 2004, 126, 12732.  doi: 10.1021/ja047639d

    15. [15]

      Geiseler, O.; Müller, M.; Podlech, J. Tetrahedron 2013, 69, 3683.  doi: 10.1016/j.tet.2013.03.013

    16. [16]

      Kito, T.; Yoshinaga, K.; Yamaye, M.; Mizobe, H. J. Org. Chem. 1991, 56, 3336.  doi: 10.1021/jo00010a029

  • 加载中
    1. [1]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    2. [2]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    3. [3]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    4. [4]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    5. [5]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    6. [6]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    7. [7]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    8. [8]

      Fei Nie Jiawei Liu Chunxin Zhao Hongbo Cui Yan Li Bin Cui . Construction of a Chemical Experimental Demonstration Center Supporting the Cultivation of Top-Notch Innovative Talents under the “Grand Ideological and Political” Framework: A Case Study of Northwest University. University Chemistry, 2024, 39(7): 32-39. doi: 10.12461/PKU.DXHX202404122

    9. [9]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    10. [10]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    11. [11]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    16. [16]

      Jiali Lin Shuting Wu Cheng Zheng Zian Lin Qiaohua Wei Shoutian Zheng . Construction and Practice of National Chemical Experiment Teaching Demonstration Center in Local Universities under the Background of “Double First-Class”. University Chemistry, 2024, 39(7): 129-139. doi: 10.12461/PKU.DXHX202405043

    17. [17]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    18. [18]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    19. [19]

      Xue Qi Zhihui Wen Xiaohang Qiu . Design of Chemistry Popular Science Courses for Primary and Secondary School Students across Various Ages under the “Double Reduction” Policy: A Case Study of Nankai University’s Chemistry Science Popularization Base. University Chemistry, 2024, 39(9): 392-400. doi: 10.3866/PKU.DXHX202310070

    20. [20]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

Metrics
  • PDF Downloads(10)
  • Abstract views(1376)
  • HTML views(221)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return