Citation: Yu Zhengwei, Li Linyi, Shen Zengming. Cu-Catalyzed Cyanation of Aryl Iodides with Acetonitrile as Cyano Source[J]. Chinese Journal of Organic Chemistry, ;2017, 37(5): 1273-1277. doi: 10.6023/cjoc201612015 shu

Cu-Catalyzed Cyanation of Aryl Iodides with Acetonitrile as Cyano Source

  • Corresponding author: Shen Zengming, shenzengming@sjtu.edu.cn
  • Received Date: 6 December 2016
    Revised Date: 5 January 2017

    Fund Project: Project supported by the National Natural Sciences Foundation of China 21272001and the Shanghai Education Committee 13ZZ014Project supported by the National Natural Sciences Foundation of China 21672144

Figures(2)

  • A Cu-catalyzed protocol for the cyanation of aryl iodides by using acetonitrile as the "CN" source has been developed, in which the Cu(cat.)/2, 2, 6, 6-tetramethyl-1-piperidinyloxy (TEMPO)/Si system shows good reactivity and generality. Both electron-rich and electron-deficient functional groups can be tolerated in this system.
  • 加载中
    1. [1]

      Kleemann, A. ; Engel, J. ; Kutschner, B. ; Reichert, D. Pharmaceutical Substances: Syntheses, Patents, Applications, 4th ed. , Thieme, Stuttgart, New York, 2001, pp. 154, 159, 241, 488, 553, 825. (b) Miller, J. S. ; Manson, J. L. Acc. Chem. Res. 2001, 34, 563. (c) Fleming, F. F. ; Wang, Q. Chem. Rev. 2003, 103, 2035.

    2. [2]

      (a) Rappoport, Z. The Chemistry of the Cyano Group, Interscience, London, 1970. (b) Larock, R. C. Comprehensive Organic Transformations: A Guide to Functional Group Preparations, Wiley-VCH, New York, 1989.

    3. [3]

      For reviews, see: (a) Ellis, G. P. ; Romney-Alexander, T. M. Chem. Rev. 1987, 87, 779. (b) Anbarasan, P. ; Schareina, T. ; Beller, M. Chem. Soc. Rev. 2011, 40, 5049. (c) Wen, Q. ; Jin, J. ; Zhang, L. ; Luo, Y. ; Lu, P. ; Wang, Y. Tetrahedron Lett. 2014, 55, 1271. (d) Yan, G. ; Yu, J. ; Zhang, L. Chin. J. Org. Chem. 2012, 32, 294 (in Chinese). (严国兵, 于健, 张玲, 有机化学, 2012, 32, 294. ) (e) Kim, J. ; Kim, H. ; Chang, S. Angew. Chem. , Int. Ed. 2012, 51, 11948. (f) Ping, Y. ; Ding, Q. ; Peng, Y. ACS Catal. 2016, 6, 5989.

    4. [4]

      For some representative examples with KCN, see: (a) Sakakibara, Y. ; Okuda, F. ; Shimobayashi, A. ; Kirino, K. ; Sakai, M. ; Uchino, N. ; Takagi, K. Bull. Chem. Soc. Jpn. 1988, 61, 1985. (b) Anderson, B. A. ; Bell, E. ; Ginah, F. , O. ; Harn, N, K. . ; Pagh, L. ; Wepsiec, J. J. Org. Chem. 1998, 63, 8224. (c) Cristau, H. ; Ouali, A. ; Spindler, J. ; Taillefer, M. Chem. Eur. J. 2005, 11, 2483. (d) Yang, C. ; Williams, J. M. Org. Lett. 2004, 6, 2837. (e) Li, C. ; Ju, Y. ; Liu, F. Org. Lett. 2009, 11, 3582. (f) Arai, S. ; Sato, T. ; Nishida, A. Adv. Synth. Catal. 2009, 351, 1897. (g) Yang, C. ; Williams, J. M. Org. Lett. 2004, 6, 2837. (h) Coughlin, M. M. ; Kelly, C. -K. ; Lin, S. ; MacArthur, M. Organometallics 2013, 32, 3537.

    5. [5]

      For some representative examples with NaCN, see: (a) Okano, T. ; Iwahara, M. ; Kiji, J. Synlett 1998, 243. (b) Zanon, J. ; Klapars, A. ; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 2890. (c) Zhang, Z. ; Wang, Z. ; Zhang, R. ; Ding, K. Angew. Chem. , Int. Ed. 2010, 49, 6746. (d) Do, H. Q. ; Daugulis, O. Org. Lett. 2010, 12, 2517. (e) Murahashi, S. I. ; Nakae, T. ; Terai, H. ; Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005. (f) Erhardt, S. ; Grushin, V. V. ; Kilpatrick, A. H. ; Macgregor, S. A. ; Marshall, W. J. ; Roe, D. C. J. Am. Chem. Soc. 2008, 130, 4828. (g) Ushkov, A. V. ; Grushin, V. V. J. Am. Chem. Soc. 2011, 133, 10999. (h) Cristau, H. J. ; Ouali, A. ; Spindler, J. F. ; Taillefer, M. Chem. -Eur. J. 2005, 11, 2483.

    6. [6]

      For some representative examples with TMSCN, see: (a) Arai, S. ; Koike, Y. ; Nishida, A. Adv. Synth. Catal. 2010, 352, 893. (b) Arai, S. ; Sato, T. ; Koike, Y. ; Hayashi, M. ; Nishida, A. Angew. Chem. , Int. Ed. 2009, 48, 4528. (c) Han, W. ; Ofial, A. R. Chem. Commun. 2009, 5024. (d) Chen, G. ; Wang, Z. ; Wu, J. ; Ding, K. Org. Lett. 2008, 10, 4573. (e) Zhang, W. ; Wang, F. ; McCann, S. D. ; Wang, D. ; Chen, P. ; Stahl, S. S. ; Liu, G. Science 2016, 353, 1014. (f) Ye, X. ; Zeng, X. ; Zhou, J. Acta Chim. Sinica 2016, 74, 984 (in Chinese). (叶旭, 曾兴平, 周剑, 化学学报, 2016, 74, 984. )

    7. [7]

      For some representative examples with K4[Fe(CN)6], see: (a) Schareina, T. ; Zapfa, A. ; Beller, M. Chem. Commun. 2004, 1388. (b) Weissman, S. A. ; Zewge, D. ; Chen, C. J. Org. Chem. 2005, 70, 1508. (c) Schareina, T. ; Zapf, A. ; Beller, M. Tetrahedron Lett. 2005, 46, 2585. (d) Grossman, O. ; Gelman, D. Org. Lett. 2006, 8, 1189. (e) Schareina, T. ; Zapf, A. ; Mägerlein, W. ; Müller, N. ; Beller, M. ; Tetrahedron Lett. 2007, 48, 1087. (f) Anbarasan, P. ; Schareina, T. ; Beller, M. Chem. Soc. Rev. 2011, 40, 5049. (g) Yeung, P. Y. ; So, C. M. ; Lau, C. P. ; Kwong, F. Y. Angew. Chem. , Int. Ed. 2010, 49, 8918.

    8. [8]

      For some representative examples with BnCN, see: (a) Wen, Q. ; Jin, J. ; Hu, B. ; Lu, P. ; Wang, Y. RSC Adv. 2012, 2, 6167. (b) Jin, J. ; Wen, Q. ; Lu, P. ; Wang, Y. Chem. Commun. 2012, 48, 9933. (c) Zhang, L. ; Wen, Q. ; Jin, J. ; Wang, C. ; Lu, P. ; Wang, Y. Tetrahedron 2013, 69, 4236. (d) Luo, Y. ; Wen, Q. ; Wu, Z. ; Jin, J. ; Lu, P. ; Wang, Y. Tetrahedron 2013, 69, 8400.

    9. [9]

      For some representative examples with t-BuNC, see: (a) Xu, S. ; Huang, X. ; Hong, X. ; Xu, B. Org. Lett. 2012, 14, 4614. (b) Peng, J. ; Zhao, J. ; Hu, Z. ; Liang, D. ; Huang, J. ; Zhu, Q. Org. Lett. 2012, 14, 4966. (c) Hong, X. ; Wang, H. ; Qian, G. ; Tan, Q. ; Xu, B. J. Org. Chem. 2014, 79, 3228.

    10. [10]

      Whitten, J. P.; McCarthy, J. R.; Matthews, D. P. Synthesis 1988, 470.

    11. [11]

      (a) Kim, J. ; Choi, J. ; Shin, K. ; Chang, S. J. Am. Chem. Soc. 2012, 134, 2528. (b) Kim, J. ; Kim, H. ; Chang, S. Org. Lett. 2012, 14, 3924. (c) Wang, Z. ; Chang, S. Org. Lett. 2013, 15, 1990.

    12. [12]

      Zhang, G.; Ren, X.; Chen, J.; Hu, M.; Cheng, J. Org. Lett. 2011, 13, 5004.  doi: 10.1021/ol201713b

    13. [13]

      (a) Ren, X. ; Chen, J. ; Chen, F. ; Cheng, J. Chem. Commun. 2011, 47, 6725. (b) Kishore, R. ; Yadav, J. ; Venu, B. ; Venugopala, A. ; Kantam, M. L. New J. Chem. 2015, 39, 5259.

    14. [14]

      (a) Song, R. -J. ; Wu, J. -C. ; Liu, Y. ; Deng, G. -B. ; Wu, C. -Y. ; Wei, W. -T. ; Li, J. -H. Synlett 2012, 2491. (b) Pan, C. ; Jin, H. ; Xu, P. ; Liu, X. ; Cheng, Y. ; Zhu, C. J. Org. Chem. 2013, 78, 9494 (c) Xu, W. ; Xu, Q. ; Li, J. Org. Chem. Front. 2015, 2, 231. (d) Luo, F. -H. ; Chu, C. -I. ; Cheng, C. -H. Organometallics 1998, 17, 1025. (e) Hu, W. ; Teng, F. ; Peng, H. ; Yu, J. ; Sun, S. ; Cheng, J. ; Shao, Y. Tetrahedron Lett. 2015, 56, 7056.

    15. [15]

      (a) Kou, X. ; Zhao, M. ; Qiao, X. ; Zhu, Y. ; Tong, X. ; Shen, Z. Chem. Eur. J. 2013, 19, 16880. (b) Zhu, Y. ; Li, L. ; Shen, Z. Chem. Eur. J. 2015, 21, 13246. (c) Zhu, Y. ; Zhao, M. ; Lu, W. ; Li, L. ; Shen, Z. Org. Lett. 2015, 17, 2602. (d) Zhao, M. ; Zhang, W. ; Shen, Z. J. Org. Chem. 2015, 80, 8868.

    16. [16]

      Pawar, A. B.; Chang, S. Chem. Commun. 2014, 50, 448.  doi: 10.1039/C3CC47926A

    17. [17]

      (a) Zheng, K. ; Yu, P. ; Chen, S. ; Chen, F. ; Cheng, J. Chin. J. Chem. 2013, 31, 449. (b) Wang, L. ; Pan, L. ; Chen, C. ; He, M. Chin. J. Chem. 2014, 32, 1221.

  • 加载中
    1. [1]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    2. [2]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    3. [3]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    4. [4]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    5. [5]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    6. [6]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    7. [7]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    8. [8]

      Min YanZihao YePing Lu . Catalyst-free, visible-light-induced [2π + 2σ] cycloaddition towards azabicyclohexanes. Chinese Chemical Letters, 2025, 36(6): 110540-. doi: 10.1016/j.cclet.2024.110540

    9. [9]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    10. [10]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    11. [11]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    12. [12]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    13. [13]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    14. [14]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Bofei JIAZhihao LIUZongyuan GAOShuai ZHOUMengxiang WUQian ZHANGXiamei ZHANGShuzhong CHENXiaohan YANGYahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317

    17. [17]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    18. [18]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    19. [19]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    20. [20]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

Metrics
  • PDF Downloads(13)
  • Abstract views(1556)
  • HTML views(228)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return