Citation: Guo Fangjie, He Yuxuan, Wang Jingyun, Sun Jing, Zhou Mingdong. Potassium tert-Butoxide Promoted Formation of Alkyl Aryl Thioethers at Room Temperature: Synthesis and Mechanism[J]. Chinese Journal of Organic Chemistry, ;2017, 37(6): 1556-1559. doi: 10.6023/cjoc201612003 shu

Potassium tert-Butoxide Promoted Formation of Alkyl Aryl Thioethers at Room Temperature: Synthesis and Mechanism

  • Corresponding author: Sun Jing, sunjing@lnpu.edu.cn Zhou Mingdong, mingdong.zhou@lnpu.edu.cn
  • Received Date: 2 December 2016
    Revised Date: 14 January 2017

    Fund Project: the Fushun Science & Technology Program FSKJHT201423the National Natural Science Foundation of China 21101085the Natural Science Foundation of Liaoning Province 2015020196the Liaoning Excellent Talents Program in University LJQ2012031the Talent Scientific Research Fund of Liaoning Shihua University 2016XJJ-006

  • The C—S cross-coupling of aryl halides with alkyl thiols under transition metal-free conditions was investigated. Good to excellent yields can be obtained for a variety of electron-poor aryl halides with alkyl thiols in the presence of KOtBu even at room temperature. The mechanisms for transition metal-free coupling reactions are discussed.
  • 加载中
    1. [1]

      (a) Yao, H. ; Richardson, D. E. J. Am. Chem. Soc. 2003, 125, 6211.
      (b) Qin, Z. ; Kastrati, I. ; Chandrasena, R. E. P. ; Liu, H. ; Yao, P. ; Petukhov, P. A. ; Bolton, J. L. ; Thatcher, G. R. J. J. Med. Chem. 2007 50, 2682.
      (c) Bagley, M. C. ; Davis, T. ; Dix, M. C. ; Rokicki, M. ; Kipling, D. Bioorg. Med. Chem. Lett. 2007, 17, 5107.
      (d) Bryan, C. S. ; Braunger, J. A. ; Lautens, M. Angew. Chem. Int. Ed. 2009, 121, 7198.
      (e) Beletskaya, I. P. ; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
      (f) Ubale, A. U. ; Bhute, M. V. ; Malpe, G. P. ; Raut, P. P. ; Chipade, K. S. ; Ibrahim, S. G. J. Sadui Chem. Soc. 2016, 20, 227.
      (g) Zhou, Y. B. ; Gao, F. ; Zhao, Y. ; Lu, J. J. Sadui Chem. Soc. 2014, 18, 589.
      (h) Zaafarany, I. ; Boller, H. J. Sadui Chem. Soc. 2010, 14, 183.
      (i) An, Y. N. ; Li, J. X. ; Li, M. . ; Li, C. S. ; Yang, S. R. Chin. J. Org. Chem. 2017, 37, 720(in Chinese).
      (安艳妮, 李建晓, 李蒙, 李春生, 杨少容, 有机化学, 2017, 37, 720. )

    2. [2]

      (a) Byeun, A.; Baek, K.; Han, M. S.; Lee, S. Tetrahedron Lett. 2013, 54, 6712.
      (b) Alvaroa, E.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 7858.
      (c) Li, J. X.; Li, C. S.; Yang, S. R.; An, Y. N.; Wu, W. Q.; Jiang, H. F. J. Org. Chem. 2016, 81, 2875.
      (d) Li, J. X.; Li, C. S.; Yang, S. R.; An, Y. N.; Wu, W. Q.; Jiang, H. F. J. Org. Chem. 2016, 81, 7771.

    3. [3]

      (a) Luo, F.; Pan, C.; Li, L. P.; Chen, F.; Cheng, J. Chem. Commun. 2011, 47, 5304.
      (b) Mallick, S.; Rana, S.; Parida, K. Dalton. Trans. 2011, 40, 9169.

    4. [4]

      (a) Zhang, J.; Medley, C. M.; Krause, J. A.; Guan, H. Organometallics 2010, 29, 6393.
      (b) Venkanna, G. T.; Arman, H. D.; Tonzetich, Z. J. ACS Catal. 2014, 4, 2941.
      (c) Jammi, S.; Barua, P.; Rout, L.; Saha, P.; Punniyamurthy, T. Tetrahedron Lett. 2008, 49, 1484.
      (d) Baldovino-Pantaleón, O.; Hernández-Ortega, S.; Morales-Mo-rales, D. Adv. Syn. Catal. 2006, 348, 236. (e) Guan, P.; Cao, C.; Liu, Y.; Li, Y.; He, P.; Chen, Q.; Liu, G.; Shi, Y. Tetrahedron Lett. 2012, 53, 5987.

    5. [5]

      (a) Zhang, Y. G.; Ngeow, K. C.; Ying, J. Y. Org. Lett. 2007, 9, 3495.
      (b) Yuan, Y.; Thomé, I.; Kim, S. H.; Chen, D.; Beyer, A.; Bonnamour, J.; Zuidema, E.; Chang, S.; Bolm, C. Adv. Synth. Catal. 2010, 352, 2892.
      (c) Cano, R.; Ramón, D. J.; Yus, M. J. Org. Chem. 2011, 76, 654.
      (d) Duan, Z.; Ranjit, S.; Liu, X. Org. Lett. 2010, 12, 2430.

    6. [6]

      (a) Shi, Y.; Cai, Z.; Guan, P.; Pang, G. Synth. Let. 2011, 22, 2090.
      (b) Fu, C. F.; Liu, Y. H.; Peng, S. M.; Liu, S. T. Tetrahedron 2010, 66, 2119.
      (c) Ma, D.; Geng, Q.; Zhang, H.; Jiang, Y. Angew. Chem., Int. Ed. 2010, 49, 1291.
      (d) Xu, R.; Wan, J. P.; Mao, H.; Pan, Y. J. Am. Chem. Soc. 2010, 132, 15531.
      (e) Wu, J. R.; Lin, C. H.; Lee, C. F. Chem. Commun. 2009, 29, 4450.
      (f) Iglesias, M. J.; Prieto, A.; Nicasio, M. C. Adv. Synth. Catal. 2010, 352, 949.

    7. [7]

      (a) Bradshaw, J. S.; Chen, E. Y.; Hales, R. H.; South, J. A. J. Org. Chem. 1972, 37, 2051.
      (b) March, J. Advanced Organic Chemistry, Vol. 4, John Wiley & Sons, Inc, New York, 1985, p. 576.
      (c) Varala, R.; Ramu, E.; Alam, M. M.; Adapa, S. R. Chem. Lett. 2004, 33, 1614.

    8. [8]

      Sun, C.; Li, H.; Yu, D.; Yu, M.; Zhou, X.; Lu, X.; Huang, K.; Zheng, S.; Li, B.; Shi, Z. Nat. Chem. 2010, 2, 044.

    9. [9]

      Liu, W.; Cao, H.; Zhang, H.; Zhang, H.; Chung, K. H.; He, C.; Wang, H.; Kong, F. Y.; Lei, A. J. Am. Chem. Soc. 2010, 132, 16737.  doi: 10.1021/ja103050x

    10. [10]

      Shirakawa, E.; Itoh, K.; Higashino, T.; Hayashi, T. J. Am. Chem. Soc. 2010, 132, 15537.  doi: 10.1021/ja1080822

    11. [11]

      (a) Wei, W. T.; Liu, Y.; Ye, L. M.; Lei, R. H.; Zhang, X. J.; Yan, M. Org. Biomol. Chem. 2015, 13, 817. (b) Chen, Y. Y.; Zhang, N. N.; Ye, L. M.; Chen, J. H.; Shun, X.; Zhang, X. J.; Yan, M. RSC Adv. 2015, 5, 48046.

    12. [12]

      Qiao, Z.; Wei, J.; Jiang, X. Org. Lett. 2014, 16, 1212.  doi: 10.1021/ol500112y

    13. [13]

      Xu, J. A.; Wei, T. Z.; Xia, J. K.; Zhang, Q. H.; Wu, H. S. Chirality 2004, 16, 341.  doi: 10.1002/(ISSN)1520-636X

    14. [14]

      Zhang, H.; Cao, W. G.; Ma, D. W. Synth. Commun. 2007, 37, 25.

    15. [15]

      Martyn, J.; Soren, L. B.; Mogens, B. N. J. Org. Chem. 2013, 78, 4348.  doi: 10.1021/jo400362u

    16. [16]

      Gorczynski, M. J.; Leal, R. M.; Mooberry, S. L.; Bushweller, J. H.; Brown, M. L. Bioorg. Med. Chem. 2004, 12, 1029.  doi: 10.1016/j.bmc.2003.12.003

    17. [17]

      Jean, M.; Renault, J.; Weghe, P. V. D.; Asao, N. Tetrahedron Lett. 2010, 51, 378.  doi: 10.1016/j.tetlet.2009.11.025

    18. [18]

      Taniguchi, N.; Onami, T. J. Org. Chem. 2004, 69, 915.  doi: 10.1021/jo030300+

  • 加载中
    1. [1]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    2. [2]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    3. [3]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    4. [4]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    5. [5]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    6. [6]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    7. [7]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    8. [8]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    9. [9]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    10. [10]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    11. [11]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    12. [12]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    13. [13]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    14. [14]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    15. [15]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    16. [16]

      Zheyu LiHuwei LiYao LiXinyu FuHongxia YueQingxing YangJing FengXinyu WangHongjie Zhang . The effect of electron-phonon coupling on the photoluminescence properties of zinc-based halides. Chinese Chemical Letters, 2025, 36(4): 109800-. doi: 10.1016/j.cclet.2024.109800

    17. [17]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    18. [18]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    19. [19]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    20. [20]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

Metrics
  • PDF Downloads(3)
  • Abstract views(975)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return