Citation: Mo Song, Ding Yong, Zhang Gang, Zhang Zhen, Shao Xuebei, Li Qinghan, Yang Xuejun, Chen Feng. Synthesis and Anti-tumor Activity Evaluation of a Novel Series of Dithiocarbamates Bearing 1, 2, 3-Triazole and [1-Bi (4-fluorophenyl) methyl]piperazine Unit[J]. Chinese Journal of Organic Chemistry, ;2017, 37(4): 1000-1008. doi: 10.6023/cjoc201611039 shu

Synthesis and Anti-tumor Activity Evaluation of a Novel Series of Dithiocarbamates Bearing 1, 2, 3-Triazole and [1-Bi (4-fluorophenyl) methyl]piperazine Unit

  • Corresponding author: Li Qinghan, lqhchem@163.com
  • Received Date: 28 November 2016
    Revised Date: 7 January 2017

    Fund Project: the Southwest University for Nationalities Students Innovation and Entrepreneurship Training Fund S201510656121the Sichuan Provincial Department of Science and Technology Support Projects 2015NZ0033

Figures(1)

  • Sixteen novel dithiocarbamates containing 1, 2, 3-trizaole and [1-bi (4-fluorophenyl) methyl]piperazine group were prepared via two steps starting from [1-bi (4-fluorophenyl) methyl]piperazine, propargyl bromide, methanedithione and sodium azide, using a very simple catalytic system composed of 5 mol% copper (Ⅰ) iodide and DMF-H2O (V:V=1:1) as solvent at 70 ℃ for 4 h with moderate yield (34%~65%). The structures of the new compounds were characterized by IR, MS, 1H NMR, 13C NMR and elemental analysis. The bioactive assay for the newly prepared compounds manifested that fourteen dithiocarbamate derivatives exhibited good to excellent inhibitory activity against CDC25B in 20 μg/mL (inhibitiory rate up to 97.96%, IC50 value up to 11.55 μg/mL), and six dithiocarbamate derivatives exhibited excellent inhibitory activity against leukemia HL-60 and lung cancer A-549 cell in 40 μmol·L-1 (inhibitiory rate up to 99.99% and 93.91%, respectively; IC50 value up to 12.11 and 22.45 μg/mL, respectively).
  • 加载中
    1. [1]

      Goel, A.; Mazur, S. J.; Fattah, R. J.; Hartman, T. L.; Turpin, J. A.; Huang, M.-J.; Rice, W. G.; Appella, E.; Inman, J. K. Bioorg. Med. Chem. Lett. 2002, 12, 767.  doi: 10.1016/S0960-894X(02)00007-0

    2. [2]

      Soledade, M.; Pedras. C.; Sarma-Mamillapalle, V. K. J. Agric. Food Chem. 2012, 60, 7792.  doi: 10.1021/jf302038a

    3. [3]

      Carta, F.; Aggarwal, M.; Maresca, A.; Scozzafava, A.; McKenna, R.; Masini, E.; Supuran, C. T. J. Med. Chem. 2012, 55, 1721.  doi: 10.1021/jm300031j

    4. [4]

      Suh, Y.-G.; Lee, Y.-S.; Min, K.-H.; Park, O.-H.; Kim, J.-K.; Seung, H.-S.; Seo, S.-Y.; Lee, B.-Y.; Nam, Y.-H.; Lee, K.-O.; Kim, H.-D.; Park, H.-G.; Lee, J.-W.; Oh, U.; Lim, J.-O.; Kang, S.-U.; Kil, M.-J.; Koo, J.-Y.; Shin, S.-S.; Joo, Y.-H.; Kim, J.-K.; Jeong, Y.-S.; Kim, S.-Y.; Park, Y.-H. J. Med. Chem. 2005, 48, 5823.  doi: 10.1021/jm0502790

    5. [5]

      Li, Q.-H.; Ding, Y.; Huang, N.-W. Chin. Chem. Lett. 2014, 25, 1296.  doi: 10.1016/j.cclet.2014.04.019

    6. [6]

      Ding, Y.; Zhang, Z.; Zhang, G.; Mo, S.; Li, Q.-H.; Zhao, Z.-G. Res. Chem. Intermed. 2016, 42, 3105.  doi: 10.1007/s11164-015-2200-5

    7. [7]

      Tan, J.; Liang, F.-H.; Wang, Y.-M.; Cheng, X.; Liu, Q.; Yuan, H.-J. Org. Lett. 2008, 10, 2485.  doi: 10.1021/ol800765s

    8. [8]

      Guo, S.-R.; Yuan, Y.-Q.; Zhang, C.-N. Chin. J. Org. Chem. 2012, 32, 907 (in Chinese).
       

    9. [9]

      Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.; Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris, J.; Reischer, R. J.; Ford, C. W.; Zurenko, G. E.; Hamel, J. C.; Schaadt, R. D.; Stapert, D.; Yagi, B. H. J. Med. Chem. 2000, 43, 953.  doi: 10.1021/jm990373e

    10. [10]

      Pagliai, F.; Pirali, T.; Grosso, E. D.; Brisco, R. D.; Tron, G. C.; Sorba, G.; Genazzani, A. A. J. Med. Chem. 2006, 49, 467.  doi: 10.1021/jm051118z

    11. [11]

      Bakunov, S. A.; Bakunova, S. M.; Wenzler, T.; Ghebru, M.; Werbovetz, K. A.; Brun, R.; Tidwell, R. R. J. Med. Chem. 2010, 53, 254.  doi: 10.1021/jm901178d

    12. [12]

      Alvarez, R.; Velazquez, S.; San-Felix, A.; Aquaro, S.; De Clercq, E.; Perno, C. F.; Karlesson, A.; Balzarini, J.; Camarasa, M. J. J. Med. Chem. 1994, 37, 4185.  doi: 10.1021/jm00050a015

    13. [13]

      Palhagen, S.; Canger, R.; Henriksen, O.; van Parys, J. A.; Riviere, M. E.; Karolchyk, M. A. Epilepsy Res. 2001, 43, 115.  doi: 10.1016/S0920-1211(00)00185-6

    14. [14]

      Kuznetsova, L.; Ungureanu, M. I.; Pepe, A. J. Fluorine Chem. 2004, 125, 415.  doi: 10.1016/j.jfluchem.2003.11.005

    15. [15]

      Sun, X.-H.; Li, S.-J.; Liu, Y.-F.; Chen, B.; Jia, Y.-Q.; Tao, Y. Chin. J. Org. Chem. 2007, 27, 82 (in Chinese).  doi: 10.3321/j.issn:0253-2786.2007.01.010
       

    16. [16]

      Haga, T.; Fujikawa, K.; Koyanag, T.; Nakajima, T.; Hayashi, K. Heterocycles 1984, 22, 117.  doi: 10.3987/R-1984-01-0117

    17. [17]

      Yoshida, S.; Meyer, O. G. J.; Rosen, T. C.; Haufe, G.; Song, Y.; Sloan, M. J.; Kirk, K. L. J. Med. Chem. 2004, 47, 1796.  doi: 10.1021/jm030398k

    18. [18]

      Shelke, S. N.; Mhaske, G. R.; Bonifàcio, V. D. B.; Gawande, M. B. Bioorg. Med. Chem. Lett. 2012, 22, 5727.  doi: 10.1016/j.bmcl.2012.06.072

    19. [19]

      Adsule, S.; Barve, V.; Chen, D.; Ahmed, F.; Dou, Q. P.; Padhye, S.; Sarkar, F. H. J. Med. Chem. 2006, 49, 7242.  doi: 10.1021/jm060712l

    20. [20]

      Ge, Z.-M.; Guo, B.-G.; Wang, H.-Y.; Cheng, T.-M.; Li, R.-T. J. Peking Univ. (Heal. Sci.) 2001, 33, 213 (in Chinese).
       

    21. [21]

      Li, Q.-H.; Zhang, G.; Ding, Y.; Chen, F.; Zhang, Z.; Mo, S. J. Southwest Univ. Natl. (Nat. Sci. Ed.) 2014, 40, 826 (in Chinese).
       

    22. [22]

      Li, Q.-H.; Zhao, Z.-G. Chin. J. Org. Chem, 2009, 29, 119 (in Chinese).
       

    23. [23]

      Deng, J.; Li, A.-N.; Li, Q.-H.; Ding, Y.; Yang, X.-J.; Chen, F. Chin. J. Org. Chem. 2016, 36, 2981 (in Chinese).
       

    24. [24]

      Li, Q.-H.; Ding, Y.; Zhang G.; Zhang, Z.; Mong, S. Chin. J. Org. Chem. 2016, 36, 83 (in Chinese).
       

  • 加载中
    1. [1]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    4. [4]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    5. [5]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    6. [6]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    7. [7]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    8. [8]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    12. [12]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    13. [13]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    14. [14]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    15. [15]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    16. [16]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    17. [17]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    18. [18]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    19. [19]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    20. [20]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

Metrics
  • PDF Downloads(5)
  • Abstract views(1326)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return