Citation: Ma Xiaoli, Deng Ziyan, Yao Miaomiao, Zhong Mingdong, Li Wenling, Yang Zhi. Synthesis and Characterization of Two β-Diketiminato Tin(Ⅳ) Compounds[J]. Chinese Journal of Organic Chemistry, ;2017, 37(5): 1300-1305. doi: 10.6023/cjoc201611035 shu

Synthesis and Characterization of Two β-Diketiminato Tin(Ⅳ) Compounds

  • Corresponding author: Ma Xiaoli, maxiaoli@bit.edu.cn Yang Zhi, zhiyang@bit.edu.cn
  • 这些作者对该研究贡献相等(These authors contributed equally to this work)
  • Received Date: 25 November 2016
    Revised Date: 30 December 2016

    Fund Project: Project supported by the National Nature Science Foundation of China 21671018

Figures(4)

  • The reactions of L1Li [L1=HC(CMeNAr)2, Ar=2, 6-iPr2C6H3] with Me2SnCl2, and L2Li [L2=HC(CMeNAr')2, Ar'=2, 6-Et2C6H3] with Me3SnCl in a molar ratio of 1:1 were carried out at room temperature and acquired two new compounds, N(Ar)=C(Me)CH=C(NHAr)CH2SnMe2Cl·C7H8 (1) and [N(Ar')C(Me)=CHC(=NAr')CH2SnMe2]2·CH2Cl2 (2), respectively. Different from regular nitrogen-metal-nitrogen bonds generated by the reactions of β-diketiminato ligands with metal halides, uncommon nitrogen-tin-carbon bonds in compounds 1 and 2 were obtained by Sn-N bond cleavage and concomitant Sn-C bond formation due to the Lewis acidity of SnMe3 and SnMe2Cl group. Compound 2 is a rare tin dimer with two resonant structures. Two compounds have been confirmed by 1H NMR, 13C NMR, elemental analysis, and single crystal X-ray structural analysis. Through the comparison of compounds 1 and 2, the formation mechanism of dimer 2 has been investigated.
  • 加载中
    1. [1]

      (a) Azoulay, J. D. ; Rojas, R. S. ; Serrano, A. V. ; Ohtaki, H. ; Galland, G. B. ; Wu, G. ; Bazan, G. C. Angew. Chem. 2009, 121, 1109. (b) Scheiper, C. ; Naglav, D. ; Bläser, D. ; Wölper, C. ; Schulz, S. Z. Anorg. Allg. Chem. 2015, 641, 871. (c) Crimmin, M. R. ; Hill, M. S. ; Hitchcock, P. B. ; Mahon, M. F. New J. Chem. 2010, 34, 1572. (d) Monreal, M. J. ; Wright, R. J. ; Morris, D. E. ; Scott, B. L. ; Golden, J. T. ; Power, P. P. ; Kiplinger, J. L. Organometallics 2013, 32, 1423. (e) Zhao, N. ; Zhang, J. Y. ; Yang, Y. ; Zhu, H. P. ; Li, Y. ; Fu, G. Inorg. Chem. 2012, 51, 8710. (f) Arrowsmith, M. ; Hill, M. S. ; Kociok-Köhn, G. ; MacDougall, D. J. ; Mahon, M. F. ; Mallov, I. Inorg. Chem. 2012, 51, 13408.

    2. [2]

      (a) Espinal-Viguri, M. ; Woof, C. R. ; Webster, R. L. Chem. Eur. J. 2016, 22, 11605. (b) Liu, Z. Z. ; Lee, J. H. Q. ; Ganguly, R. ; Vidovic, D. Chem. Eur. J. 2015, 21, 11344. (c) Moore, D. R. ; Cheng, M. ; Lobkovsky, E. B. ; Coates, G. W. Angew. Chem. 2002, 114, 2711. (d) Zhu, H. P. ; Chai, J. F. ; Fan, H. J. ; Roesky, H. W. ; He, C. ; Jancik, V. ; Schmidt, H. ; Noltemeyer, M. , ; Merrill, W. A. ; Power, P. P. Angew. Chem. 2005, 117, 5220. (e) King, A. K. ; Buchard, A. ; Mahon, M. F. ; Webster, R. L. Chem. Eur. J. 2015, 21, 15960.

    3. [3]

      Li, Y.; Zhu, H. P.; Tan, G. W.; Zhu, T.; Zhang, J. Y. Eur. J. Inorg. Chem. 2011, 34, 5265.

    4. [4]

      (a) Zhao, N. ; Zhang, J. Y. ; Yang, Y. ; Chen, G. F. ; Zhu, H. P. ; Roesky, H. W. Organometallics 2013, 32, 762. (b) Asay, M. ; Jones, C. ; Driess, M. Chem. Rev. 2011, 111, 354. (c) Hamaki, H. ; Takeda, N. ; Tokitoh, N. Organometallics 2006, 25, 2457. (d) Harder, S. ; Spielmann, J. Chem. Commun. 2011, 47, 11945. (e) Hitchcock, P. B. ; Lappert, M. F. ; Protchenko, A. V. Chem. Commun. 2005, 7, 951. (f) Knight, L. K. ; Piers, W. E. ; McDonald, R. Organometallics 2006, 25, 3289. (g) Harder, S. Organometallics 2002, 21, 3782. (h) Bai, G. C. ; Wei, P. R. ; Stephan, D. W. Organometallics 2005, 24, 5901. (i) Hayes, P. G. ; Piers, W. E. ; Parvez, M. J. Am. Chem. Soc. 2003, 125, 5622.

    5. [5]

      (a) Lesikar, L. A. ; Woodul, W. D. ; Richards, A. F. Polyhedron 2007, 26, 3242. (b) Lu, Z. ; Reeske, G. ; Moore, J. A. ; Cowley, A. H. Chem. Commun. 2006, 48, 5060. (c) Xiong, Y. ; Yao, S. L. ; Driess, M. Dalton Trans. 2009, 3, 421.

    6. [6]

      (a) Ragogna, P. J. ; Burford, N. ; D'eon, M. ; Mcdonald, R. Chem. Commun. 2003, 9, 1052. (b) Rake, B. ; Ziilch, F. ; Ding, Y. ; Prust, J. ; Roesky, H. W. ; Noltemeyer, M. ; Schmidt H. -G. Z. Anorg. Allg. Chem. 2001, 627, 836. (c) Burford, N. ; D'eon, M. ; Ragogna, P. J. ; Mcdonald, R. ; Ferguson, M. J. Inorg. Chem. 2004, 43, 734. (d) Hitchcock, P. B. ; Lappert, M. F. ; Nycz, J. E. Chem. Commun. 2003, 10, 1142.

    7. [7]

      Lesikar, L. A.; Richards, A. F. J. Organomet. Chem. 2006, 691, 4250.  doi: 10.1016/j.jorganchem.2006.06.036

    8. [8]

      Yao, S. L.; Zhang, X. H.; Xiong, Y.; Schwarz, H.; Driess, M. Organometallics 2010, 29, 5353.  doi: 10.1021/om100383y

    9. [9]

      Yu, Y.; Li, J. C.; Liu W. P.; Ye, Q. S.; Zhu, H. P. Dalton Trans. 2016, 45, 6259.  doi: 10.1039/C5DT03873A

    10. [10]

      Li, J. C.; Li, Y.; Purushothaman, I.; De, S.; Li, B.; Zhu, H. P.; Parameswaran, P.; Ye, Q. S.; Liu, W. P. Organometallics 2015, 34, 4209.  doi: 10.1021/om501288t

    11. [11]

      (a) Crimmin, M. R. ; Barrett, A. G. M. ; Hill, M. S. ; MacDougall, D. J. ; Mahon, M. F. ; Procopiou, P. A. Dalton Trans. 2009, 44, 9715. (b) Harder, S. Angew. Chem. , Int. Ed. 2003, 42, 3430.

    12. [12]

      (a) Doyle, D. J. ; Hitchcock, P. B. ; Lappert, M. F. ; Li, G. J. Organomet. Chem. 2009, 694, 2611. (b) Hitchcock, P. B. ; Lappert, M. F. ; Liu, D. S. J. Chem. Soc. , Chem. Commun. 1994, 14, 1699. (c) Hitchcock, P. B. ; Hu, J. ; Lappert, M. F. ; Severn, J. R. Dalton Trans. 2004, 24, 4193. (d) Jana, A. ; Sarish, S. P. ; Roesky, H. W. ; Schulzkeb, C. ; Samuela, P. P. Chem. Commun. 2010, 46, 707. (e) Xiao, X. ; Hao, X. M. ; Bai, J. L. ; Chao, J. B. ; Cao, W. ; Chen, X. RSC Adv. 2016, 6, 60723.

    13. [13]

      Hitchcock, P. B.; Khvostov, A. V.; Lappert, M. F.; Protchenko, A. V. Dalton Trans. 2009, 13, 2383.

    14. [14]

      Nekoueishahraki, B.; Sarish S. P.; Roesky, H. W.; Stern, D.; Schulzke, C.; Stalke, D. Angew. Chem., Int. Ed. 2009, 48, 4517.  doi: 10.1002/anie.v48:25

    15. [15]

      (a) Vedejs, E. ; Haight, A. R. ; Moss, W. O. ChemInform 1992, 45, 6556. (b) Varga, R. A. ; Rotar, A. ; Schürmann, M. ; Jurkschat, K. ; Silvestru, C. Eur. J. Inorg. Chem. 2006, 7, 1475.

    16. [16]

      Švec, P.; Černošková, E.; Padělková, Z.; Růžička, A.; Holeček, J. J. Organomet. Chem. 2010, 695, 2475.  doi: 10.1016/j.jorganchem.2010.08.006

    17. [17]

      Cheng, M.; Moore, D. R.; Reczek, J. J.; Chamberlain, B. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738.  doi: 10.1021/ja003850n

    18. [18]

      Sheldrick, G. M. SADABS, Empirical Absorption Correction Program, University of Göttingen, Germany, 1996.

    19. [19]

      Sheldrick, G. M. Acta Crystallogr., Sect. A 1990, 46, 467.  doi: 10.1107/S0108767390000277

    20. [20]

      Sheldrick, G. M. SHELXL-97, University of Göttingen, Germany, 1993.

  • 加载中
    1. [1]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    2. [2]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    3. [3]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

    4. [4]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    5. [5]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    6. [6]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    7. [7]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    8. [8]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    9. [9]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    10. [10]

      Qingbai TianBingLiang YuZhihao LiWei HongQian LiXing Xu . Versatile catalytic membranes anchored with metal-nitrogen based metal oxides for ultrafast Fenton-like oxidation. Chinese Chemical Letters, 2025, 36(6): 110322-. doi: 10.1016/j.cclet.2024.110322

    11. [11]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    12. [12]

      Liying OuZhenluan XueBo LiZhiwei JinJiaochan ZhongLixia YangPenghui ShaoShenglian Luo . Nitrogen-containing linkage-bonds in covalent organic frameworks: Synthesis and applications. Chinese Chemical Letters, 2025, 36(6): 110294-. doi: 10.1016/j.cclet.2024.110294

    13. [13]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    14. [14]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    15. [15]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    16. [16]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    17. [17]

      Zheyu LiHuwei LiYao LiXinyu FuHongxia YueQingxing YangJing FengXinyu WangHongjie Zhang . The effect of electron-phonon coupling on the photoluminescence properties of zinc-based halides. Chinese Chemical Letters, 2025, 36(4): 109800-. doi: 10.1016/j.cclet.2024.109800

    18. [18]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    19. [19]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    20. [20]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

Metrics
  • PDF Downloads(1)
  • Abstract views(922)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return