Citation: Xiao Chunxia, Cao Lin, Wang Jia, Miao Yinlong, Fan Huafang. Advances in the Collective Synthesis of Lycopodium Alkaloids[J]. Chinese Journal of Organic Chemistry, ;2017, 37(4): 810-823. doi: 10.6023/cjoc201611032 shu

Advances in the Collective Synthesis of Lycopodium Alkaloids

  • Corresponding author: Fan Huafang, fhf@nwafu.edu.cn
  • Received Date: 24 November 2016
    Revised Date: 24 December 2016

    Fund Project: the National Natural Science Foundation of China 21403169the Postdoctoral Science Foundation of China 2013M532084the Chinese Universities Scientific Fund 2452015079the National Natural Science Foundation of China 21502153

Figures(17)

  • In view of the relevance between chemical structures and biosynthetic pathways of compounds that belong to the same family of natural products, MacMillan et al. (2011) proposed a strategy for the rapid and efficient synthesis of natural product within a family from a common intermediate or a group of similar intermediates, which is termed as collective synthesis. In recent years, this strategy has been applied for the synthesis of multiple family of natural products. Lycopodium alkaloids are a class of structurally diverse alkaloids, and many of them exhibiting good biological activity. In this review, the progress in the collective synthesis of Lycopodium alkaloids is summarized.
  • 加载中
    1. [1]

      (a) Zhao, G.; Dai, S.; Chen, R. Dictionary of Traditional Chinese Medicine, 2 ed., Shanghai Scienfitic & Technical Publishers, Shanghai, 2009, pp. 284~285, 774~775, 1590~1591 (in Chinese).

    2. [2]

      Choo, C. Y.; Hirasawa, Y.; Karimata, C.; Koyama, K.; Sekiguchi, M.; Kobayashi, J. I.; Morita, H. Bioorg. Med. Chem. 2007, 15, 1703.  doi: 10.1016/j.bmc.2006.12.005

    3. [3]

      (a) Mandal, S. K.; Biswas, R.; Bhattacharyya, S. S.; Paul, S.; Dutta, S.; Pathak, S.; Khuda-Bukhsh, A. R. Eur. J. Pharmacol. 2010, 626, 115.
      (b) Ham, Y.-M.; Yoon, W.-J.; Park, S.-Y.; Jung, Y.-H.; Kim, D.; Jeon, Y.-J.; Wijesinghe, W.; Kang, S.-M.; Kim, K.-N. Food Chem. Toxicol. 2012, 50, 2629.

    4. [4]

      He, J.; Chen, X.-Q.; Li, M.-M.; Zhao, Y.; Xu, G.; Cheng, X.; Peng, L.-Y.; Xie, M.-J.; Zheng, Y.-T.; Wang, Y.-P. Org. Lett. 2009, 11, 1397.  doi: 10.1021/ol900079t

    5. [5]

      Yuan, C.; Chang, C.-T.; Axelrod, A.; Siegel, D. J. Am. Chem. Soc. 2010, 132, 5924.  doi: 10.1021/ja101956x

    6. [6]

      Feng, X.; Jiang, H.; Zhang, Y.; He, W.; Zhang, L. J. Med. Plants Res. 2012, 6, 1263.

    7. [7]

    8. [8]

      Liu, J.; Yu, C.; Zhou, Y.; Han, Y.; Qi, B.; Zhu, Y. Acta Chim. Sinica 1986, 44, 1035 (in Chinese).  doi: 10.3321/j.issn:0251-0790.1986.11.021

    9. [9]

      (a) Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2012, 75, 311.
      (b) Li, J. W.-H.; Vederas, J. C. Science 2009, 325, 161.

    10. [10]

      (a) Jones, S. B.; Simmons, B.; Mastracchio, A.; MacMillan, D. W. C. Nature 2011, 475, 183.
      (b) Schreiber, S. L. Science 2000, 287, 1964.

    11. [11]

      (a) Yang, H.; Carter, R. G.; Zakharov, L. N. J. Am. Chem. Soc. 2008, 130, 9238.
      (b) Yang, H.; Carter, R. G. J. Org. Chem. 2010, 75, 4929.

    12. [12]

      (a) Saha, M.; Carter, R. G. Org. Lett. 2013, 15, 736.
      (b) Saha, M.; Li, X.; Collett, N. D.; Carter, R. G. J. Org. Chem. 2016, 81, 5963.

    13. [13]

      Ding, R.; Sun, B.-F.; Lin, G.-Q. Org. Lett. 2012, 14, 4446.  doi: 10.1021/ol301951r

    14. [14]

      (a) Ding, R.; Fu, J.-G.; Xu, G.-Q.; Sun, B.-F.; Lin, G.-Q. J. Org. Chem. 2014, 79, 240.
      (b) Fu, J.-G.; Xu, G.-Q.; Ding, R.; Lin, G.-Q.; Sun, B.-F. Org. Chem. Front. 2016, 3, 62.

    15. [15]

      (a) Heathcock, C. H.; Smith, K. M.; Blumenkopf, T. A. J. Am. Chem. Soc. 1986, 108, 5022.
      (b) Heathcock, C. H.; Blumenkopf, T. A.; Smith, K. M. J. Org. Chem. 1989, 54, 1548.

    16. [16]

      Murphy, R. A.; Sarpong, R. Chem.-Eur. J. 2014, 20, 42.  doi: 10.1002/chem.201303975

    17. [17]

      Nakayama, A.; Kitajima, M.; Takayama, H. Synlett 2012, 23, 2014.  doi: 10.1055/s-0032-1316680

    18. [18]

      (a) Otsuka, Y.; Inagaki, F.; Mukai, C. J. Org. Chem. 2010, 75, 3420.
      (b) Kozaka, T.; Miyakoshi, N.; Mukai, C. J. Org. Chem. 2007, 72, 10147.
      (c) Itoh, N.; Iwata, T.; Sugihara, H.; Inagaki, F.; Mukai, C. Chem.-Eur. J. 2013, 19, 8665.

    19. [19]

      Pan, G.; Williams, R. M. J. Org. Chem. 2012, 77, 4801.  doi: 10.1021/jo3006045

    20. [20]

      (a) Zaimoku, H.; Taniguchi, T. Chem.-Eur. J. 2014, 20, 9613.
      (b) Zaimoku, H.; Nishide, H.; Nishibata, A.; Goto, N.; Taniguchi, T.; Ishibashi, H. Org. Lett. 2013, 15, 2140.

    21. [21]

      (a) Yang, Y.-R.; Lai, Z.-W.; Shen, L.; Huang, J.-Z.; Wu, X.-D.; Yin, J.-L.; Wei, K. Org. Lett. 2010, 12, 3430.
      (b) Yang, Y.-R.; Shen, L.; Wei, K.; Zhao, Q.-S. J. Org. Chem. 2010, 75, 1317.
      (c) Yang, Y.-R.; Shen, L.; Huang, J.-Z.; Xu, T.; Wei, K. J. Org. Chem. 2011, 76, 3684.
      (d) Dong, L.-B.; Wu, Y.-N.; Jiang, S.-Z.; Wu, X.-D.; He, J.; Yang, Y.-R.; Zhao, Q.-S. Org. Lett. 2014, 16, 2700.

    22. [22]

      Xu, T.; Luo, X.-L.; Yang, Y.-R. Tetrahedron Lett. 2013, 54, 2858.  doi: 10.1016/j.tetlet.2013.03.097

    23. [23]

      Jiang, S.-Z.; Lei, T.; Wei, K.; Yang, Y.-R. Org. Lett. 2014, 16, 5612.  doi: 10.1021/ol502679v

    24. [24]

      (a) Zhang, X.-M.; Tu, Y.-Q.; Zhang, F.-M.; Shao, H.; Meng, X. Angew. Chem., Int. Ed. 2011, 50, 3916.
      (b) Zhang, X.-M.; Shao, H.; Tu, Y.-Q.; Zhang, F.-M.; Wang, S.-H. J. Org. Chem. 2012, 77, 8174.

    25. [25]

      (a) Li, H.; Wang, X.; Lei, X. Angew Chem., Int. Ed. 2012, 51, 491.
      (b) Li, H.; Wang, X.; Hong, B.; Lei, X. J. Org. Chem. 2013, 78, 800.
      (c) Wang, X.; Li, H.; Lei, X. Synlett 2013, 24, 1032.
      (d) Zhang, J.; Wu, J.; Hong, B.; Ai, W.; Wang, X.; Li, H.; Lei, X. Nat. Commun. 2014, 5, 4614.
      (e) Hong, B.; Li, H.; Wu, J.; Zhang, J.; Lei, X. Angew. Chem., Int. Edit. 2015, 54, 1011.

    26. [26]

      (a) Zeng, C.; Zheng, C.; Zhao, J.; Zhao, G. Org. Lett. 2013, 15, 5846.
      (b) Zeng, C.; Zhao, J.; Zhao, G. Tetrahedron 2015, 71, 64.

    27. [27]

      Hou, S.-H.; Tu, Y.-Q.; Liu, L.; Zhang, F.-M.; Wang, S.-H.; Zhang, X.-M. Angew. Chem., Int. Ed. 2013, 52, 11373.  doi: 10.1002/anie.v52.43

    28. [28]

      Wolfe, B. H.; Libby, A. H.; Al-Awar, R. S.; Foti, C. J.; Comins, D. L. J. Org. Chem. 2010, 75, 8564.  doi: 10.1021/jo1019688

    29. [29]

      Shigeyama, T.; Katakawa, K.; Kogure, N.; Kitajima, M.; Takayama, H. Org. Lett. 2007, 9, 4069.  doi: 10.1021/ol701871v

    30. [30]

      Tanaka, T.; Kogure, N.; Kitajima, M.; Takayama, H. J. Org. Chem. 2009, 74, 8675.  doi: 10.1021/jo9018182

    31. [31]

      (a) Bradshaw, B.; Luque-Corredera, C.; Bonjoch, J. Org. Lett. 2013, 15, 326.
      (b) Bradshaw, B.; Luque-Corredera, C.; Bonjoch, J. Chem. Commun. 2014, 50, 7099.
      (c) Bosch, C.; Bradshaw, B.; Bonjoch, J.; Fiser, B.; Gomez-Bengoa, E. Org. Lett. 2015, 17, 5084.

    32. [32]

      Nishikawa, Y.; Kitajima, M.; Kogure, N.; Takayama, H. Tetrahedron 2009, 65, 1608.  doi: 10.1016/j.tet.2008.12.067

    33. [33]

      Liau, B. B.; Shair, M. D. J. Am. Chem. Soc. 2010, 132, 9594.  doi: 10.1021/ja104575h

    34. [34]

      Lee, A. S.; Liau, B. B.; Shair, M. D. J. Am. Chem. Soc. 2014, 136, 13442.  doi: 10.1021/ja507740u

  • 加载中
    1. [1]

      Tao Yang Kaijiao Duan Siyu Li Jing Wei Qingdi Yang Qian Wang . A Comprehensive and Innovative Chemical Experimental Teaching: Extraction and Identification of Tea Polyphenols from Pu'er Tea and the Application in Hand Cream Making. University Chemistry, 2024, 39(8): 270-275. doi: 10.3866/PKU.DXHX202312040

    2. [2]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    3. [3]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    4. [4]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    5. [5]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    6. [6]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    7. [7]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    10. [10]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    11. [11]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    12. [12]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    13. [13]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    14. [14]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    15. [15]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    16. [16]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    17. [17]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    18. [18]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

Metrics
  • PDF Downloads(52)
  • Abstract views(4218)
  • HTML views(551)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return