Citation: Li Qiu, Wang Yu, Hu Mengjin, Chen Peng, You Wenwei, Zhao Peiliang. Synthesis and Biological Activities of Novel 2, 4-Diaminopyrimidine Derivatives Bearing Indole Moiety[J]. Chinese Journal of Organic Chemistry, ;2017, 37(4): 967-974. doi: 10.6023/cjoc201611006 shu

Synthesis and Biological Activities of Novel 2, 4-Diaminopyrimidine Derivatives Bearing Indole Moiety

  • Corresponding author: Zhao Peiliang, plzhao@smu.edu.cn
  • Received Date: 3 November 2016
    Revised Date: 19 December 2016

    Fund Project: the National Natural Science Foundation of China 21102069the Project of Science and Technology New Star in Zhujiang Guangzhou City 2012J2200051the National Natural Science Foundation of China 21372113

Figures(1)

  • Based on our previous work, twenty-three novel 2, 4-diaminopyrimidine derivatives bearing indole moiety were designed and synthesized. Structures of all compounds were elucidated by 1H NMR, 13C NMR and HRMS. Antiproliferative activities for all these compounds were evaluated by the method of methyl thiazolyl tetrazolium (MTT) assay against four cancer cell lines (HeLa, MD-MBA-231, PC-3 and HCT116), and the results demonstrated that some compounds possessed significant antitumor activities in vitro. Particularly, the most promising ethyl (2-((2-benzoyl-5-chloro-1H-indol-3-yl) amino)-5-nitropyrimidin-4-yl) glycinate (8j) displayed 2.0-and 0.5-fold improvement compared to fluorouracil in inhibiting HCT116, and MD-MBA-231 cell proliferation with IC50 values of 23.15 and 36.88 mmol/L, respectively. These findings suggest that compound 8j may have potential to be developed as a promising lead for the design of novel anticancer small-molecule drugs.
  • 加载中
    1. [1]

      Peasland, A.; Wang, L. Z.; Rowling, E.; Kyle, S.; Chen, T.; Hopkins, A.; Cliby, W. A..; Sarkaria, J.; Beale, G.; Edmondson, R. J.; Curtin, N. J. Br. J. Cancer 2011, 105, 372.  doi: 10.1038/bjc.2011.243

    2. [2]

      Boschi, D.; Tosco, P.; Chandra, N.; Chaurasia, S.; Fruttero, R.; Griffin, R.; Wang, L. Z.; Gasco, A. Eur. J. Med. Chem. 2013, 68, 333.  doi: 10.1016/j.ejmech.2013.07.031

    3. [3]

      Argade, A.; Bhamidipati, S.; Li, H.; Carroll, D.; Clough, J.; Keim, H.; Sylvain, C.; Rossi, A. B.; Coquilla, C.; Issakani, S. D.; Masuda, E. S.; Payan, D. G.; Singh, R. Bioorg. Med. Chem. Lett. 2015, 25, 2117.  doi: 10.1016/j.bmcl.2015.03.075

    4. [4]

      Daniels, T. R.; Leuchter, R. K.; Quintero, R.; Helguera G.; Rodríguez, J. A.; Martínez-Maza, O.; Schultes, B. C.; Nicodemus, C. F.; Penichet, M. L. Cancer Immunol. Immunother. 2012, 61, 991.  doi: 10.1007/s00262-011-1150-z

    5. [5]

      Seganish, W. M.; McElroy, W. T.; Herr, R. J.; Brumfield, S.; Greenlee, W. J.; Harding, J.; Komanduri, V.; Matasi, J.; Prakash, K. C.; Tulshian, D.; Yang, J.; Yet, L.; Devito, K.; Fossetta, J.; Garlisi, C. G.; Lundell, D.; Niu, X.; Sondey, C. Bioorg. Med. Chem. Lett. 2015, 25, 3203.  doi: 10.1016/j.bmcl.2015.05.097

    6. [6]

      Robinson, S. J.; Petzer, J. P.; Terre'Blanche, G.; Petzer, A.; Walt, M. M.; Bergh, J. J.; Lourens, A. C. Eur. J. Med. Chem. 2015, 104, 177.  doi: 10.1016/j.ejmech.2015.09.035

    7. [7]

      Liu, Z.; Ai, J.; Peng, X.; Song, Z.; Wu, K.; Zhang, J.; Yao, Q.; Chen, Y.; Ji, Y.; Yang, Y.; Geng, M.; Zhang, A. ACS Med. Chem. Lett. 2014, 5, 304.  doi: 10.1021/ml400373j

    8. [8]

      Lange, A.; Günther, M.; Büttner, F. M.; Zimmermann, M. O.; Heidrich, J.; Hennig, S.; Zahn, S.; Schall, C.; Sievers-Engler, A.; Ansideri, F.; Koch, P.; Laemmerhofer, M.; Stehle, T.; Laufer, S. A.; Boeckler, F. M. J. Am. Chem. Soc. 2015, 137, 14640.  doi: 10.1021/jacs.5b07090

    9. [9]

      Hanan, E. J.; Eigenbrot, C.; Bryan M. C.; Burdick, D. J.; Chan, B. K.; Chen, Y.; Dotson, J.; Heald, R. A.; Jackson, P. S.; La, H.; Lainchbury, M. D.; Malek, S.; Purkey, H. E.; Schaefer, G.; Schmidt, S.; Seward, E. M.; Sideris, S.; Tam, C.; Wang, S.; Yeap, S. K.; Yen, I.; Yin, J.; Yu, C.; Zilberleyb, I.; Heffron, T. P. J. Med. Chem. 2014, 57, 10176.  doi: 10.1021/jm501578n

    10. [10]

      Lawrence, H. R.; Mahajan, K.; Luo, Y.; Zhang, D.; Tindall, N.; Huseyin, M.; Gevariya, H.; Kazi, S.; Ozcan, S.; Mahajan, N. P.; Lawrence, N. J. J. Med. Chem. 2015, 58, 2746.  doi: 10.1021/jm501929n

    11. [11]

      Alexander, L. T.; Mo€bitz, H.; Drueckes, P.; Savitsky, P.; Fedorov, O.; Elkins, J. M.; Deane, C. M.; Cowan-Jacob, S. M.; Knapp, S. ACS Chem. Biol. 2015, 10, 2116.  doi: 10.1021/acschembio.5b00398

    12. [12]

      Deng, L. Q.; Zhong, H.; Wang, S. Chin. J. Org. Chem. 2014, 34, 414 (in Chinese).
       

    13. [13]

      Ma, W. F.; Yang, H. K.; Hu, M. J.; Li, Q.; Ma, T. Z.; Zhou, Z. Z.; Liu, R. Y.; You, W. W.; Zhao, P. L. Eur. J. Med. Chem. 2014, 84, 127.  doi: 10.1016/j.ejmech.2014.07.017

    14. [14]

      Hu, M. J.; Zhang, B.; Yang, H. K.; Liu, Y.; Chen, Y. R.; Ma, T. Z.; Lu, L.; You, W. W.; Zhao, P. L. Chem. Biol. Drug Des. 2015, 86, 1491.  doi: 10.1111/cbdd.12616

    15. [15]

      Zhao, P. L.; Li, Y. H.; Yang, H. K.; Chen, P.; Zhang, B.; Sun, Q.; Li, Q.; You, W. W. Eur. J. Med. Chem. 2016, 118, 161.  doi: 10.1016/j.ejmech.2016.04.038

    16. [16]

      Esmaeelian, B.; Benkendorff, K.; Johnston, M. R.; Abbott, C. A. Mar. Drugs 2013, 10, 3802.

    17. [17]

      Ma, H. G.; Wang, L. P.; Xu, Z. H.; Zhang, Y. P.; Li, X.; Zhu, W. M. Chin. J. Org. Chem. 2016, 36, 1839 (in Chinese).
       

    18. [18]

      Romagnoli, R.; Baraldi, P. G.; Salvador, M. K.; Prencipe, F.; Lopez-Cara, C.; Ortega, S. S.; Brancale, A.; Hamel, E.; Castagliuolo, I.; Mitola, S.; Ronca, R.; Bortolozzi, R.; Porcu, E.; Basso, G.; Viola, G. J. Med. Chem. 2015, 58, 3209.  doi: 10.1021/acs.jmedchem.5b00155

    19. [19]

      Ma, H. L.; Yan, X. J.; Xiao, Y. M.; Yuan, D. K.; Zhang, Z. H.; Fu, B.; Yuan, H. Z. Chin. J. Org. Chem. 2016, 36, 158 (in Chinese).
       

    20. [20]

      Rohini, R. M.; Manjunath, M. Pharma Chem. 2012, 6, 2438.

    21. [21]

      Guerra, A. S.; Malta, D. J.; Laranjeira, L. P.; Maia, M. B.; Colaço, N. C.; de Lima Mdo, C.; Galdino, S. L.; Pitta Ida, R.; Gonçalves-Silva, T. Int. Immunopharmacol. 2011, 11, 1816.  doi: 10.1016/j.intimp.2011.07.010

    22. [22]

      Mei, W. W.; Guo, Y. W.; Li, J.; Cai, M. Y.; Ma, W. Q.; Gong, J. X.; Wang, X. D. Chin. J. Org. Chem. 2016, 36, 533 (in Chinese).
       

    23. [23]

      Silveira, C. C.; Bernardi, C. R.; Braga, A, L.; Kaufman, T. S. Tetrahedron Lett. 2001, 51, 8947.

    24. [24]

      Yang, H. K.; You, W. W.; Yan, G. H.; Jiang, Z. H.; Zhao, P. L.; Zhou, Z. Z. Synth. Commun. 2014, 44, 1165.  doi: 10.1080/00397911.2013.858360

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    5. [5]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    6. [6]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    9. [9]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    10. [10]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    11. [11]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    12. [12]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    13. [13]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    14. [14]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    17. [17]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    18. [18]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

Metrics
  • PDF Downloads(4)
  • Abstract views(1378)
  • HTML views(189)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return