Citation: Su Lü, Xiao Hanbing, Yuan Yumeng, Zhang Xiaofeng, Lin Shen, Huang Qiufeng. Palladium-Catalyzed C-H Alkoxycarbonylation of Caffeines: Synthesis of 8-Ester-substituted Caffeines[J]. Chinese Journal of Organic Chemistry, ;2017, 37(3): 630-635. doi: 10.6023/cjoc201610028 shu

Palladium-Catalyzed C-H Alkoxycarbonylation of Caffeines: Synthesis of 8-Ester-substituted Caffeines

  • Corresponding author: Huang Qiufeng, qiufenghuang@fjnu.edu.cn
  • Received Date: 17 October 2016
    Revised Date: 8 December 2016

    Fund Project: Project supported by the National Natural Science Foundation of China 2110322the Foundation of Fujian Educational Committee JK2014010Project supported by the National Natural Science Foundation of China 6152010615

Figures(3)

  • Carbonyl-substituted caffeine derivatives have attracted much attention due to their potent pharmaceutical activity and interesting fluorescent properties. An efficient synthesis of 8-ester-substituted caffeines through palladium-catalyzed C-H alkoxycarbonylation was developed. The reaction was carried out in the presence of PdCl2(PPh3)2 and Cu (OAc)2 under 101 kPa CO atmosphere in 1, 4-dioxane, providing diversified 8-ester-substituted caffeines in reasonable to good yields. The approach was characterized by using atmospheric pressure of carbon monoxide and broad functional group tolerance.
  • 加载中
    1. [1]

      (a) Quintero-Duque, S.; Dyballa, K. M.; Fleischer, I. Tetrahedron Lett. 2015, 56, 2634.
      (b) Wu, X.-F.; Fang, X.; Wu, L.; Jackstell, R.; Neumann, H.; Beller, M. Acc. Chem. Res. 2014, 47, 1041.
      (c) Sumino, S.; Fusano, A.; Fukuyama, T.; Ryu, I. Acc. Chem. Res. 2014, 47, 1563.
      (d) Barnard, C. F. J. Organometallics 2008, 27, 5402.
      (e) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Rev. 2013, 113, 1.
      (f) Omae, I. Coordin. Chem. Rev. 2011, 255, 139.

    2. [2]

      (a) Schoenberg, A.; Bartoletti, I.; Heck, R. F. J. Org. Chem. 1974, 39, 3318.
      (b) Schoenberg, A.; Heck, R. F. J. Org. Chem. 1974, 39, 3327.
      (c) Schoenberg, A.; Heck, R. F. J. Am. Chem. Soc. 1974, 96, 7761.

    3. [3]

      (a) Wu, L.; Fang, X.; Liu, Q.; Jackstell, R.; Beller, M.; Wu, X.-F. ACS Catal. 2014, 4, 2977.
      (b) Sumino, S.; Fusano, A.; Fukuyama, T.; Ryu, I. Acc. Chem. Res. 2014, 47, 1563.
      (c) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Soc. Rev. 2011, 40, 4986.
      (d) Brennführer, A.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2009, 48, 4114.
      (e) Sargent, B. T.; Alexanian, E. J. J. Am. Chem. Soc. 2016, 138, 7520.

    4. [4]

      (a) Liu, B.; Hu, F.; Shi, B.-F. ACS Catal. 2015, 5, 1863.
      (b) Wu, X.-F.; Neumann, H.; Beller, M. ChemSusChem 2013, 6, 229.
      (c) Liu, Q.; Zhang, H.; Lei, A. Angew. Chem., Int. Ed. 2011, 50, 10788.
      (d) Gadge, S. T.; Bhanage, B. M. RSC Adv. 2014, 4, 10367.
      (e) Fenner, S.; Ackermann, L. Green Chem. 2016, 18, 3804.
      (f) Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858.

    5. [5]

      (a) Müller, C. E.; Jacobson, K. A. Biochim. Biophys. Acta 2011, 1808, 1290.
      (b) Stydom, B.; Bergh, J. J.; Petzer, J. P. Eur. J. Med. Chem. 2011, 46, 3474.
      (c) Van der Walt, M. M.; Terre'Blanche, G.; Petzer, A.; Lourens, A. C. U.; Petzer, J. P. Bioorg. Chem. 2013, 49, 49.
      (d) Rivara, S.; Piersanti, G.; Bartoccini, F.; Diamantini, G.; Pala, D.; Riccioni, T.; Stasi, M. A.; Cabri, W.; Borsini, F.; Mor, M.; Tarzia, G.; Minetti, P. J. Med. Chem. 2013, 56, 1247.
      (e) Baraldi, P. G.; Baraldi, S.; Saponaro, G.; Preti, D.; Romagnoli, R.; Piccagli, L.; Cavalli, A.; Recanatini, M.; Moorman, A. R.; Zaid, A. N.; Varani, K.; Borea, P. A.; Tabrizi, M. J. J. Med. Chem. 2012, 55, 797.

    6. [6]

      Uchil, V.; Seo, B.; Nair, V. J. Org. Chem. 2007, 72, 8577.  doi: 10.1021/jo701336r

    7. [7]

      (a) Zhang, H.; Zhou, L.; Zhu, Z.; Yang, C. Chem. Eur. J. 2016, 22, 9886.
      (b) Kocaoglu, O.; Carlson, E. E. Nat. Chem. Biol. 2016, 12, 472.
      (c) Rice, D. R.; Clear, K. J.; Smith, B. D. Chem. Commun. 2016, 52, 8787.

    8. [8]

      (a) Greco, N. J.; Tor, Y. Tetrahedron 2007, 63, 3515.
      (b) Kim, D.; Lee, J. H.; Hong, S.-S.; Hong, S. Org. Lett. 2010, 12, 1212.
      (c) Zhao, D.; Wang, W.; Yang, F.; Lan, J.; Yang, L.; Gao, G.; You, J. Angew. Chem., Int. Ed. 2009, 48, 3296.
      (d) Huang, Y.; Song, F.; Wang, Z.; Xi, P.; Wu, N.; Wang, Z.; Lan, J.; You, J. Chem. Commun. 2012, 48, 2864.

    9. [9]

      Heer, J. P.; Smith, I. E. D. WO 2007017265, 2007[Chem. Abstr. 2007, 146, 251660].

    10. [10]

      (a) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936.
      (b) Li, H.; Shi, Z. Prog. Chem. 2010, 22, 1414 (in Chinese).
      (李湖, 施章杰, 化学进展, 2010, 22, 1414).
      (c) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
      (d) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev. 2015, 115, 12138.
      (e) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107.
      (f) Gang, F.; Xu, G.; Dong, T.; Yang, L.; Du, Z. Chin. J. Org. Chem. 2015, 35, 1428 (in Chinese).
      (刚芳莉, 徐关利, 董涛生, 杨丽, 杜正银, 有机化学, 2015, 35, 1428.) 

    11. [11]

      (a) Lang, R.; Shi, L.; Li, D.; Xia, C.; Li, F. Org. Lett. 2012, 14, 4130.
      (b) Chen, M.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. J. Org. Chem. 2015, 80, 1258.
      (c) Li, X.; Li, X.; Jiao, N. J. Am. Chem. Soc. 2015, 137, 9246.
      (d) Yoo, E. J.; Wasa, M, Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 17378.
      (e) Lian, Z.; Friis, S. D.; Skrydstrup, T. Chem. Commun. 2015, 51, 1870.
      (f) Liu, B.; Hu, F.; Shi, B.-F. ACS Catal. 2015, 5, 1863.

    12. [12]

      Chen, M.; Ren, Z.-H.; Wang, R.-Y.; Guan, Z.-H. Angew. Chem., Int. Ed. 2013, 52, 14196.  doi: 10.1002/anie.201307942

    13. [13]

      Lang, R.; Wu, J.; Shi, L.; Xia, C.; Li, F. Chem. Commun. 2011, 47. 12553.

    14. [14]

      Zhang, H.; Liu, D.; Chen, C.; Liu, C.; Lei, A. Chem. Eur. J. 2011, 17, 9581.  doi: 10.1002/chem.v17.35

    15. [15]

      (a) Malakar, C. C.; Schmidt, D.; Conrad, J.; Beifuss, U. Org. Lett. 2011, 13, 1378.
      (b) Daly, J. W.; Padgett, W. L.; Shamim, M. T. J. Med. Chem. 1986, 29, 1305.

  • 加载中
    1. [1]

      Zhanming Zhang Can Zhu Juan Wang Yanghui Lin Mo Sun . Ideological and Political Cases in the Course of Organic Chemistry Experiment: Taking Caffeine Extraction from Tea Leaves Experiment as an Example. University Chemistry, 2025, 40(7): 34-41. doi: 10.12461/PKU.DXHX202409030

    2. [2]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Application of Comparative Pedagogy in Instrumental Analysis Experiment Teaching. University Chemistry, 2024, 39(3): 266-273. doi: 10.3866/PKU.DXHX202309068

    3. [3]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    6. [6]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    7. [7]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    8. [8]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    9. [9]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    10. [10]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    14. [14]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    15. [15]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    16. [16]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    17. [17]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    18. [18]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

Metrics
  • PDF Downloads(6)
  • Abstract views(1240)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return