Citation: Yuan Sitian, Wang Yanhua, Qiu Guanyinsheng, Liu Jinbiao. Recent Advances in Radical Initiated C-N Bond Formation under Transition Metal-Free Conditions[J]. Chinese Journal of Organic Chemistry, ;2017, 37(3): 566-576. doi: 10.6023/cjoc201610011 shu

Recent Advances in Radical Initiated C-N Bond Formation under Transition Metal-Free Conditions

  • Corresponding author: Qiu Guanyinsheng, qiuguanyinsheng@mail.zjxu.edu.cn Liu Jinbiao, liujbgood@hotmail.com
  • Received Date: 9 October 2016
    Revised Date: 11 November 2016

    Fund Project: Project supported by the National Natural Science Foundation of China 21502075Project supported by the National Natural Science Foundation of China 21502069the Natural Science Foundation of Zhejiang Province LQ15B020006

Figures(11)

  • Nitrogen-containing compounds are extremely important because of their abundance in synthetic organic compounds, natural products and pharmaceutical agents. Recently, transition metal-free C-N bond-formation via radical procedures has attracted wide interest. The recent advances in C-N bond formation via C (sp3, sp2 or sp)-H bond activation under transition metal-free conditions are summarized.
  • 加载中
    1. [1]

      (a) Humphrey, J.-M.; Chamberlin, A.-R. Chem. Rev. 1997, 97, 2243.
      (b) Sheha, M.-M.; Mahfouz, N.-M.; Hassan, H.-Y.; Youssel, A.-F.; Mimoto, T.; Kiso, Y. Eur. J. Med. Chem. 2000, 35, 887.

    2. [2]

      (a) Davies, H. M. L.; Long, M.-S. Angew. Chem., Int. Ed. 2005, 44, 3518.
      (b) Naota, T.; Murahashi, S. Synlett 1991, 693.

    3. [3]

      (a) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317, 790.
      (b) Muthaiah, S.; Ghosh, S.-C.; Jee, J.-E.; Chen, C.; Zhang, J.; Hong, S.-H. J. Org. Chem. 2010, 75, 3002.
      (c) Lu, B.-L.; Li, X.-Y.; Lin, Y.-M. Chin. J. Org. Chem. 2015, 35, 2275 (in Chinese).
      (卢贝丽, 李现艳, 林咏梅, 有机化学, 2015, 35, 2275.)
      (d) Zhog, Y.-X.; Ren, K.; Xie, X.-M.; Zhang, Z.-G. Chin. J. Org. Chem. 2016, 36, 258 (in Chinese).
      (钟业辛, 任凯, 谢小敏, 张兆国, 有机化学, 2016, 36, 258.)
      (e) Qiu, D.; Qiu, M.-L.; Ma, R.; Wang, J.-B. Acta Chim. Sinica 2016, 74, 472 (in Chinese).
      (邱頔, 邱孟龙, 马戎, 张艳, 王剑波, 化学学报, 2016, 74, 472.)
      (f) Zhang, W.-M.; Dai, J.-J.; Xu, H.-J. Chin. J. Org. Chem. 2015, 35, 1820 (in Chinese).
      (张文曼, 戴建军, 许华建, 有机化学, 2015, 35, 1820.)

    4. [4]

      Liu, D.; Lei, A. Chem. Asian J. 2015, 10, 806.  doi: 10.1002/asia.v10.4

    5. [5]

      Li, C.-J. Acc. Chem. Res. 2008, 42, 335.

    6. [6]

      Lao, Z.-Q.; Zhong, W.-H.; Lou, Q.-H.; Li, Z.-J.; Meng, X.-B. Org. Biomol. Chem. 2012, 10, 7869.  doi: 10.1039/c2ob26430g

    7. [7]

      Li, L.-T.; Li, H.-Y.; Xing, L.-J.; Wen, L.-J.; Wang, P.; Wang, B. Org. Biomol. Chem. 2012, 10, 9519.  doi: 10.1039/c2ob26636a

    8. [8]

      Sun, K.; Wang, X.; Li, G.; Jiang, Y.-Q.; Xiao, B.-B. Chem. Commun. 2014, 50, 12880.  doi: 10.1039/C4CC06003B

    9. [9]

      Dian, L.; Wang, S.; Negrerie, D.-Z.; Du, Y.-F.; Zhao, K. Chem. Commun. 2014, 50, 11738.  doi: 10.1039/C4CC05758A

    10. [10]

      Rajamanickam, S.; Majji, G.; Santra, S.-K.; Patel, B.-K. Org. Lett. 2015, 17, 5586.  doi: 10.1021/acs.orglett.5b02749

    11. [11]

      Lv, Y.-H.; Li, Y.; Xiong, T.; Lu, Y.; Liu, Q.; Zhang, Q. Chem. Commun. 2014, 50, 2367.  doi: 10.1039/c3cc48887j

    12. [12]

      Xue, Q.-C.; Xie, J.-X.; Li, H.-M.; Cheng, Y.-X.; Zhu, C.-J. Chem. Commun. 2013, 49, 3700.  doi: 10.1039/c3cc41558a

    13. [13]

      Wang, L.; Zhu, K.; Chen, Q.; He, M.-Y. J. Org. Chem. 2014, 79, 11780.  doi: 10.1021/jo502283h

    14. [14]

      Aruri, H.; Singh, U.; Kumar, S.; Kushwaha, M.; Gupta, A.-P.; Vishwakarma, R.-A.; Singh, P.-P. Org. Lett. 2016, 18, 3638  doi: 10.1021/acs.orglett.6b01684

    15. [15]

      Sun, J.-W.; Wang, Y.; Pan, Y. J. Org. Chem. 2015, 80, 8945.  doi: 10.1021/acs.joc.5b01383

    16. [16]

      Lv, Y.-H.; Sun, K.; Wang, T.-T.; Wu, Y.-T.; Li, G.; Pu, W.-Y.; Mao, S.-K. Asian J. Org. Chem. 2016, 5, 325  doi: 10.1002/ajoc.v5.3

    17. [17]

      Xu, K.; Hu, Y.; Zhang, S.; Zhang, S.; Zha, Z.; Wang, Z.-Y. Chem.-Eur. J. 2012, 18, 9793.  doi: 10.1002/chem.v18.32

    18. [18]

      Gao, L.-F.; Tang, H.-M.; Wang, Z.-Y. Chem. Commun. 2014, 50, 4085.  doi: 10.1039/c4cc00621f

    19. [19]

      Mai, W.-P.; Wang, H.-H.; Li, Z.-C.; Yuan, J.-W.; Xiao, Y.-M.; Yang, L.-R.; Mao, P.; Qu, L.-B. Chem. Commun. 2012, 48, 10117.  doi: 10.1039/c2cc35279f

    20. [20]

      Lamani, M.; Prabhu, K.-R. Chem. Eur. J. 2012, 18, 14638.  doi: 10.1002/chem.201202703

    21. [21]

      Zhao, Q.; Miao, T.; Zhang, X.-B.; Z, W.; W, L. Org. Biomol. Chem. 2013, 11, 1867.  doi: 10.1039/c3ob27433k

    22. [22]

      Du, B.-N.; Jin, B.; Sun, P.-P. Org. Biomol. Chem. 2014, 12, 4586.  doi: 10.1039/c4ob00520a

    23. [23]

      Kantak, A.-A.; Potavathri, S.; Barham, R.-A.; Romano, K.-M.; DeBoef, B. J. Am. Chem. Soc. 2011, 133, 19960.  doi: 10.1021/ja2087085

    24. [24]

      Xue, Q.; Xie, J.; Xu, P.; Hu, K.-D.; Cheng, Y.-X.; Zhu, C.-J. ACS Catal. 2013, 3, 1365.  doi: 10.1021/cs400250m

    25. [25]

      Yuan, Y.-C.; Hou, W.-J.; Zhang-Negrerie, D.; Zhao, K.; Du, Y.-F. Org. Lett. 2014, 16, 5410.  doi: 10.1021/ol5026525

    26. [26]

      Qiu, J.-K.; Hao, W.-J.; Wang, D.-C.; Wei, P.; Sun, J.; Jiang, B.; Tu, S.-J. Chem. Commun. 2014, 50, 14782.  doi: 10.1039/C4CC06795A

    27. [27]

      Prasad, K.-R.; Suresh, P.; Ravikumar, B.; Reddy, N.-V.; Reddy, K.-R. Tetrahedron Lett. 2014, 55, 6307.  doi: 10.1016/j.tetlet.2014.09.080

    28. [28]

      Zhao, J.-J.; Li, P, ; Xia, C.-G.; Li, F.-W. Chem. Commun. 2014, 50, 4751.  doi: 10.1039/c4cc01587h

    29. [29]

      Yang, H.-Y.; Hu, W.-J.; Deng, S.-J.; Wu, T.-T.; Cen, H.-N.; Cen, Y.-P.; Zhang, D.-L.; Wang, B. New J. Chem. 2015, 39, 5912.  doi: 10.1039/C5NJ01372K

    30. [30]

      Deshidi, R.; Rizvi, M.-A.; Shah, B.-A. RSC Adv. 2015, 5, 90521.  doi: 10.1039/C5RA17425B

    31. [31]

      Wang, G.; Yu, Q.-Y.; Chen, S.-Y.; Yu, X.-Q. Org. Biomol. Chem. 2013, 12, 414.

    32. [32]

      Qin, W.-J.; Li, Y.; Yu, X.-X.; Deng, W.-P. Tetrahedron 2015, 71, 1182.  doi: 10.1016/j.tet.2015.01.013

    33. [33]

      Liu, Z.-J.; Zhang, J.; Chen, S.-L.; Shi, E.-B.; Xu, Y.; Wan, X.-B. Angew. Chem., Int. Ed. 2012, 51, 3231.  doi: 10.1002/anie.v51.13

    34. [34]

      Mai, W.-P.; Song, G.; Yuan, J.-W.; Yang, L.-R.; Sun, G.-C.; Xiao, Y.-M.; Mao, P.; Qu, L.-B. RSC Adv. 2013, 3, 3869.  doi: 10.1039/c3ra40298c

    35. [35]

      Wang, S.; Wang, J.; Guo, R.; Wang, G.; Chen, S.-Y.; Yu, X.-Q. Tetrahedron Lett. 2013, 54, 6233.  doi: 10.1016/j.tetlet.2013.09.018

    36. [36]

      Vanjari, R.; Guntreddi, T.; Singh, K.-N. Green Chem. 2014, 16, 351.  doi: 10.1039/C3GC41548A

    37. [37]

      Achar, T.-K.; Mal, P. J. Org. Chem. 2014, 80, 666.

    38. [38]

      (a) Song, L.; Zhang, L.; Luo, S.; Cheng, J.-P. Chem. Eur. J. 2014, 20, 14231.
      (b) Wang, R.; Liu, H.; Yue, L.; Zhang, X.-K.; Tan, Q.-Y.; Pan, R.-L. Tetrahedron Lett. 2014, 55, 2233.

    39. [39]

      Kalmode, H.-P.; Vadagaonkar, K.-S.; Chaskar, A.-C. RSC Adv. 2014, 4, 565.

  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    5. [5]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    6. [6]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    7. [7]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    8. [8]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    9. [9]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    10. [10]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    11. [11]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    12. [12]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    14. [14]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    15. [15]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    16. [16]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    17. [17]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    18. [18]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    19. [19]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    20. [20]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

Metrics
  • PDF Downloads(42)
  • Abstract views(3174)
  • HTML views(848)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return