Citation: Jiang Xin, Wang Sidun, Guo Guimin, Lu Beili. Recent Development of Metal-Free Direct Asymmetric Functionalization of Benzylic C (sp3)—H Bond[J]. Chinese Journal of Organic Chemistry, ;2017, 37(4): 841-857. doi: 10.6023/cjoc201610010 shu

Recent Development of Metal-Free Direct Asymmetric Functionalization of Benzylic C (sp3)—H Bond

  • Corresponding author: Lu Beili, lubl@fafu.edu.cn
  • Received Date: 8 October 2016
    Revised Date: 18 December 2016

    Fund Project: the Natural Science Foundation of Fujian Province 2015J05046the National Natural Science Foundation of China 21502019the National Natural Science Foundation of China 21402027the Chemicals and Science Foundation for Distinguished Young Scholars of Fujian Agriculture and Forestry University xjq201503

Figures(18)

  • Compounds containing aryl structures are important organic synthesis intermediates, which are widely present in a large family of natural products and bioactive molecules. In recent years, direct asymmetric functionalization of benzylic C (sp3)—H bond for the efficient construction of arene and hetero-arene motifs with high stereoselectivity has drawn widespread concern from chemical community. Among the various strategies, small molecule-catalyzed metal-free functionalization of benzylic C (sp3)—H bond represents a more challenging but promising transformations. This review is intended to summarize and discuss the most recent advances in this area.
  • 加载中
    1. [1]

      (a) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem. Eur. J. 2010, 16, 2654.
      (b) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.
      (c) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624.
      (d) Davies, H. M. L.; Morton, D. J. Org. Chem. 2016, 81, 343.
      (e) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726.
      (f) Wang, M.; Wang, Z.; Shang, M.; Dai, H. Chin. J. Org. Chem. 2015, 35, 570 (in Chinese). (王明明, 王子潇, 商明, 戴辉雄, 有机化学, 2015, 35, 570.)
      (g) Tan, M.; Gu, Y.; Luo, X.; Zhang, P. Chin. J. Org. Chem. 2015, 35, 781 (in Chinese). (谭明雄, 顾运琼, 罗旭健, 张培, 有机化学, 2015, 35, 781.)
      (h) Chen, T.; Zhang, M. Chin. J. Org. Chem. 2015, 35, 813 (in Chinese). (陈天保, 章明, 有机化学, 2015, 35, 813.)
      (i) Zhao, J.; Zhang, Q. Acta Chim. Sinica 2015, 73, 1235 (in Chinese). (赵金钵, 张前, 化学学报, 2015, 73, 1235.)
      (j) Shang, X.; Liu, Z. Acta Chim. Sinica 2015, 73, 1275 (in Chinese). (尚筱洁, 柳忠全, 化学学报, 2015, 73, 1275.)

    2. [2]

      (a) Davies, H. M. L.; Lian, Y. Acc. Chem. Res. 2012, 45, 923.
      (b) Motevalli, S.; Sokeirik, Y.; Ghanem, A. Eur. J. Org. Chem. 2016, 1459.
      (c) Ye, B.; Cramer, N. Acc. Chem. Res. 2015, 48, 1308.
      (d) He, G.; Wang, B.; Nack, W. A.; Chen, G. Acc. Chem. Res. 2016, 49, 635.

    3. [3]

      (a) Retamosa, M. G.; Matador, E.; Monge, D.; Lassaletta, J. M.; Fernandez, R. Chem. Eur. J. 2016, 22, 13430.
      (b) Bulfield, D.; Huber, S. M. Chem. Eur. J. 2016, 22, 14434.
      (c) Tanriver, G.; Dedeoglu, B.; Catak, S.; Aviyente, V. Acc. Chem. Res. 2016, 49, 1250.
      (d) Donslund, B. S.; Johansen, T. K.; Poulsen, P. H.; Halskov, K. S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2015, 54, 13860.

    4. [4]

      (a) Zhao, Y.-L.; Wang, Y.; Luo, Y.-C.; Fu, X.-Z.; Xu, P.-F. Tetrahedron Lett. 2015, 56, 3703.
      (b) Zheng, C.; You, S.-L. RSC Adv. 2014, 4, 6173
      (c) Wei, G.; Basheer, C.; Tan, C.-H.; Jiang, Z. Tetrahedron Lett. 2016, 57, 3801.

    5. [5]

      (a) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74.
      (b) Stockerla, S.; Mancheño, O. G. Org. Chem. Front. 2016, 3, 277.
      (c) Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Chem. Soc. 2003, 125, 15312.

    6. [6]

      Benfatti, F.; Capdevila, M. G.; Zoli, L.; Benedetto, E.; Cozzi, P. G. Chem. Commun. 2009, 5919.

    7. [7]

      Ho, X.-H.; Mho, S.; Kang, H.; Jang, H.-Y. Eur. J. Org. Chem. 2010, 4436.

    8. [8]

      Zhang, B.; Xiang, S.-K.; Zhang, L.-H.; Cui, Y.; Jiao, N. Org. Lett. 2011, 13, 5212.  doi: 10.1021/ol202090a

    9. [9]

      Huang, F.; Xu, L.; Xiao, J. Chin. J. Chem. 2012, 30, 2721.  doi: 10.1002/cjoc.v30.11

    10. [10]

      Pan, Y.; Kee, C. W.; Chen, L.; Tan, C.-H. Green Chem. 2011, 13, 2682.  doi: 10.1039/c1gc15489c

    11. [11]

      Neel, A. J.; Hehn, J. P.; Tripet, P. F.; Toste, F. D. J. Am. Chem. Soc. 2013, 135, 14044.  doi: 10.1021/ja407410b

    12. [12]

      Zhang, G.; Ma, Y.; Wang, S.; Kong, W.; Wang, R. Chem. Sci. 2013, 4, 2645.  doi: 10.1039/c3sc50604e

    13. [13]

      Meng, Z.; Sun, S.; Yuan, H.; Lou, H.; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 543.  doi: 10.1002/anie.v53.2

    14. [14]

      Liu, X.; Meng, Z.; Li, C.; Lou, H.; Liu, L. Angew. Chem., Int. Ed. 2015, 54, 6012.  doi: 10.1002/anie.201500703

    15. [15]

      Liu, X.; Sun, S.; Meng, Z.; Lou, H.; Liu, L. Org. Lett. 2015, 17, 2396.  doi: 10.1021/acs.orglett.5b00909

    16. [16]

      Xie, Z.; Zan, X.; Sun, S.; Pan, X.; Liu, L. Org. Lett. 2016, 18, 3944.  doi: 10.1021/acs.orglett.6b01625

    17. [17]

      (a) Xiao, J. ChemCatChem 2012, 4, 612.
      (b) Nielsen, M.; Worgull, D.; Zweifel, T.; Gschwend, B.; Bertelsen, S.; Jørgensen, K. A. Chem. Commun. 2011, 47, 632.

    18. [18]

      Hayashi, Y.; Itoh, T.; Ishikawa, H. Angew. Chem., Int. Ed. 2011, 50, 3920.  doi: 10.1002/anie.201006885

    19. [19]

      Zhang, S.-L.; Xie, H.-X.; Zhu, J.; Li, H.; Zhang, X.-S.; Li, J.; Wang, W. Nat. Commun. 2011, 2, 211.  doi: 10.1038/ncomms1214

    20. [20]

      Zeng, X.; Ni, Q.; Raabe, G.; Enders, D. Angew. Chem., Int. Ed. 2013, 52, 2977.  doi: 10.1002/anie.201209581

    21. [21]

      Mo, J.; Shen, L.; Chi, Y. R. Angew. Chem., Int. Ed. 2013, 52, 8588.  doi: 10.1002/anie.201302152

    22. [22]

      Fu, Z.; Xu, J.; Zhu, T.; Leong, W. W. Y.; Chi, Y. R. Nat. Chem. 2013, 5, 835.  doi: 10.1038/nchem.1710

    23. [23]

      Fu, Z.; Jiang, K.; Zhu, T.; Torres, J.; Chi, Y. R. Angew. Chem., Int. Ed. 2014, 53, 6506.  doi: 10.1002/anie.201402620

    24. [24]

      Jin, Z.; Chen, S.; Wang, Y.; Zheng, P.; Yang, S.; Chi, Y. R. Angew. Chem., Int. Ed. 2014, 53, 13506.  doi: 10.1002/anie.201408604

    25. [25]

      Xie, Y.; Yu, C.; Li, T.; Tu, S.; Yao, C. Chem. Eur. J. 2015, 21, 5355.  doi: 10.1002/chem.201500345

    26. [26]

      Wang, M. ChemCatChem 2013, 5, 1291.  doi: 10.1002/cctc.v5.6

    27. [27]

      Kang, Y. K.; Kim, S. M.; Kim, D. Y. J. Am. Chem. Soc. 2010, 132, 11847.  doi: 10.1021/ja103786c

    28. [28]

      Mori, K.; Ehara, K.; Kurihara, K.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 6166.  doi: 10.1021/ja2014955

    29. [29]

      Kang, Y. K.; Kim, D. Y. Chem. Commun. 2014, 50, 222.  doi: 10.1039/C3CC46710D

    30. [30]

      Jaworski, A. A.; Scheidt, K. A. J. Org. Chem. 2016, 81, 10145.  doi: 10.1021/acs.joc.6b01367

    31. [31]

      Williams, R. M.; Rollins, S. B.; Judd, T. C. Tetrahedron 2000, 56, 521.  doi: 10.1016/S0040-4020(99)01046-7

    32. [32]

      Liu, Y.; Nappi, M.; Arceo, E.; Vera, S.; Melchiorre, P. J. Am. Chem. Soc. 2011, 133, 15212.  doi: 10.1021/ja206517s

    33. [33]

      Liu, Y.; Nappi, M.; Escudero-Adán, E. C.; Melchiorre, P. Org. Lett. 2012, 14, 1310.  doi: 10.1021/ol300192p

    34. [34]

      Xiao, Y.-C.; Zhou, Q.-Q.; Dong, L.; Liu, T.-Y.; Chen, Y.-C. Org. Lett. 2012, 14, 5940.  doi: 10.1021/ol302853m

    35. [35]

      Li, T.; Zhu, J.; Wu, D.; Li, X.; Wang, S.; Li, H.; Li, J.; Wang, W. Chem. Eur. J. 2013, 19, 9147.  doi: 10.1002/chem.v19.28

    36. [36]

      Dell'Amico, L.; Companyó, X.; Naicker, T.; Bräuer, T. M.; Jørgensen, K. A. Eur. J. Org. Chem. 2013, 5262.

    37. [37]

      Raja, A.; Hong, B.-C.; Lee, G.-H. Org. Lett. 2014, 16, 5756.  doi: 10.1021/ol502821e

    38. [38]

      Skrzyńska, A.; Przydacz, A.; Albrecht, Ł. Org. Lett. 2015, 17, 5682.  doi: 10.1021/acs.orglett.5b02979

    39. [39]

      Chen, X.; Yang, S.; Song, B.-A.; Chi, Y. R. Angew. Chem., Int. Ed. 2013, 52, 11134.  doi: 10.1002/anie.201305861

    40. [40]

      Xu, J.; Yuan, S.; Miao, M. Org. Lett. 2016, 18, 3822.  doi: 10.1021/acs.orglett.6b01831

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    3. [3]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    4. [4]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    5. [5]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    6. [6]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    10. [10]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    11. [11]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    12. [12]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    18. [18]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    19. [19]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(37)
  • Abstract views(2232)
  • HTML views(447)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return