Citation: Tong Qing, Gao Qiang, Xu Bolian, Yu Lei, Fan Yining. Pt/WO3/ZrO2-Catalyzed Selective Hydrogenolysis of Glycerol to Produce 1, 3-Propanediol[J]. Chinese Journal of Organic Chemistry, ;2017, 37(3): 753-758. doi: 10.6023/cjoc201610002 shu

Pt/WO3/ZrO2-Catalyzed Selective Hydrogenolysis of Glycerol to Produce 1, 3-Propanediol

  • Corresponding author: Yu Lei, yulei@yzu.edu.cn Fan Yining, ynfan@nju.edu.cn
  • Received Date: 1 October 2016
    Revised Date: 16 November 2016

    Fund Project: the National Natural Science Fundation of China 21202141the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Key Science & Technology Specific Projects of Yangzhou YZ20122029

Figures(2)

  • Glycerol is an abundantly generated biomass and conversion of this compound into useful chemicals is of significant industrial value. Hydrogenolysis of glycerol produces a series of C-3 alcohols, such as 1-propanol, 2-propanol, 1, 2-pro-panediol and 1, 3-propanediol (1, 3-PDO). Among these compounds, 1, 3-PDO is an important organic intermediate to synthesize poly-trimethylene-terephthalate. Therefore, synthesis of 1, 3-PDO through the selective hydrogenolysis of glycerol is a promising subject. Recently, during our investigations on the Pt/WO3/ZrO2-catalyzed glycerol hydrolysis, it was found that the acidity of the catalyst could be controlled by tungsten oxide content and the glycerol conversion was largely improved with high 1, 3-PDO selectivity. The technology largely improved the synthetic efficiency and is of potential industrial application value.
  • 加载中
    1. [1]

      (a) Suppes, G. J.; Dasari, M. A.; Doskocil, E. J.; Mankidy, P. J.; Goff, M. J. Appl. Catal., A 2004, 257, 213.
      (b) Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044.

    2. [2]

      (a) Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; Lindner, F. Green Chem. 2008, 10, 13.
      (b) Alhanash, A.; Kozhevnikova, E. F.; Kozhevnikov, I. V. Appl. Catal., A 2010, 378, 11.
      (c) King, D. L.; Zhang, L.; Xia, G.; Karim, A. M.; Heldebrant, D. J.; Wang, X.-Q.; Peterson, T.; Wang, Y. Appl. Catal., B 2010, 99, 206.

    3. [3]

      (a) Kurosaka, T.; Maruyama, H.; Naribayashi, I.; Sasaki, Y. Catal. Commun. 2008, 9, 1360.
      (b) Gong, L.-F.; LÜ , Y.; Ding, Y.-J.; Lin, R.-H.; Li, J.-W.; Dong, W.-D.; Wang, T.; Chen, W.-M. Chin. J. Catal. 2009, 30, 1189.
      (c) Qin, L.-Z.; Song, M.-J.; Chen, C.-L. Green Chem. 2010, 12, 1466.
      (d) Zhu, S.-H.; Gao, X.-Q.; Zhu, Y.-L.; Cui, J.-L.; Zheng, H.-Y.; Li, Y.-W. Appl. Catal., B 2014, 158, 391.
      (e) Tong, Q.; Zong, A.-Y.; Gong, W.; Yu, L.; Fan, Y.-N. RSC Adv. 2016, 6, 86663.
      (f) Gong, L.-F.; Lu, Y.; Ding, Y.-J.; Lin, R.-H.; Li, J.; Dong, W.-D.; Wang, T.; Chen, W.-M. Appl. Catal., A 2010, 390, 119.
      (g) Daniel, O. M.; DeLaRiva, A.; Kunkes, E. L.; Datye, A. K.; Dumesic, J. A.; Davis, R. J. ChemCatChem2010, 2, 1107.
      (h) Gandarias, I.; Arias, P.; Requies, J.; Güemez, M.; Fierro, J. Appl. Catal., B 2010, 97, 248.
      (i) Liu, L.-J.; Zhang, Y.-H.; Wang, A.-Q.; Zhang, T. Chin. J. Catal. 2012, 33, 1257.
      (j) Zhu, S.-H.; Zhu, Y.-L.; Hao, S.-L.; Chen, L.-G.; Zhang, B.; Li, Y.-W. Catal. Lett. 2012, 142, 267.
      (k) Arundhathi, R.; Mizugaki, T.; Mitsudome, T.; Jitsukawa, K.; Kaneda, K. ChemSusChem2013, 6, 1345.
      (l) Dam, J. ten; Djanashvili, K.; Kapteijn, F.; Hanefeld, U. ChemCatChem2013, 5, 497.
      (m) Zhang, Y.-H.; Zhao, X.-C.; Wang, Y.; Zhou, L.-K.; Zhang, J.-Y.; Wang, J.; Wang, A.-Q.; Zhang, T. J. Mater. Chem. A2013, 1, 3724.
      (n) Zhu, S.-H.; Gao, X.-Q.; Zhu, Y.-L.; Zhu, Y.-F.; Xiang, X.-M.; Hu, C.-X.; Li, Y.-W. Appl. Catal., B 2013, 140, 60.
      (o) Zhu, S.-H.; Qiu, Y.-N.; Zhu, Y.-L.; Hao, S.-L.; Zheng, H.-Y.; Li, Y.-W. Catal. Today2013, 212, 120.
      (p) Deng, C.-H.; Duan, X.-Z.; Zhou, J.-H.; Chen, D.; Zhou, X.-G.; Yuan, W.-K. Catal. Today2014, 234, 208.
      (q) Priya, S. S.; Kumar, V. P.; Kantam, M. L.; Bhargava, S. K.; Chary, K. V. RSC Adv. 2014, 4, 51893.
      (r) García-Fernández, S.; Gandarias, I.; Requies, J.; Güemez, M. B.; Bennici, S.; Auroux, A.; Arias, P. L. J. Catal. 2015, 323, 65.
      (s) Zhu, S.-H.; Gao, X.-Q.; Zhu, Y.-L.; Li, Y.-W. J. Mol. Catal., A 2015, 398, 391.

    4. [4]

      (a) Furikado, I.; Miyazawa, T.; Koso, S.; Shimao, A.; Kunimori, K.; Tomishige, K. Green Chem. 2007, 9, 582.
      (b) Shimao, A.; Koso, S.; Ueda, N.; Shinmi, Y.; Furikado, I.; Tomishige, K. Chem. Lett. 2009, 38, 540.
      (c) Guan, J.; Chen, X.-F.; Peng, G.-M.; Wang, X.-C.; Cao, Q.; Lan, Z.-G.; Mu, X.-D. Chin. J. Catal. 2013, 34, 1656.

    5. [5]

      (a) Amada, Y.; Shinmi, Y.; Koso, S.; Kubota, T.; Nakagawa, Y.; Tomishige, K. Appl. Catal., B 2011, 105, 117.
      (b) Auneau, F.; Noë l, S.; Aubert, G.; Besson, M.; Djakovitch, L.; Pinel, C. Catal. Commun. 2011, 16, 144.
      (c) Nakagawa, Y.; Ning, X.; Amada, Y.; Tomishige, K. Appl. Catal., A 2012, 433, 128.
      (d) Tamura, M.; Amada, Y.; Liu, S.-B.; Yuan, Z.-L.; Nakagawa, Y.; Tomishige, K. J. Mol. Catal., A 2014, 388, 177.

    6. [6]

    7. [7]

    8. [8]

      (a) Scheithauer, M.; Grasselli, R. K.; Knö zinger, H. Langmuir 1998, 14, 3019.
      (b) Sohn, J. R.; Park, M. Y. Langmuir 1998, 14, 6140.

    9. [9]

      (a) Schott, F. J. P.; Balle, P.; Adler, J.; Kureti, S. Appl. Catal., B 2009, 87, 18.
      (b) Triwahyono, S.; Jalil, A. A.; Hattori, H. J. Nat. Gas Chem. 2007, 16, 252.

    10. [10]

      Balaraju, M.; Rekha, V.; Prasad, P. S. S.; Devi, B. L. A. P.; Pra-sad, R. B. N.; Lingaiah, N. Appl. Catal., A 2009, 354, 82.  doi: 10.1016/j.apcata.2008.11.010

  • 加载中
    1. [1]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    2. [2]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    3. [3]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    4. [4]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    5. [5]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    6. [6]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    7. [7]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    8. [8]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    9. [9]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    10. [10]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    11. [11]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    12. [12]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    16. [16]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    17. [17]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    20. [20]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

Metrics
  • PDF Downloads(6)
  • Abstract views(1348)
  • HTML views(165)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return