Citation: Li Qianggen, Xiang Shikai, Mao Shuang, Ren Yi. Theoretical Investigations on the Intramolecular N-Arylation Mechanism and Reactivity for the Synthesis of Benzimidazoles by Base-Catalyzed[J]. Chinese Journal of Organic Chemistry, ;2017, 37(3): 608-616. doi: 10.6023/cjoc201609020 shu

Theoretical Investigations on the Intramolecular N-Arylation Mechanism and Reactivity for the Synthesis of Benzimidazoles by Base-Catalyzed

  • Corresponding author: Li Qianggen, liqgen@sina.com Ren Yi, renyi@scu.edu.cn
  • Received Date: 18 September 2016
    Revised Date: 7 December 2016

    Fund Project: the Research Funds of Sichuan Normal University 16ZP10Project supported by the National Natural Science Foundation of China 21202109the Research Fund of Department of Education, of Sichuan Province 13ZB0160

Figures(7)

  • Quantum chemical studies on the intramolecular N-arylation mechanism and reactivity of N-(2-halogen phenyl)-N'-phenyl ethyl amidines in dimethyl sulfoxide (DMSO) for the synthesis of benzimidazoles by base-catalyzed have been performed at MP2/6-311+G**//B3LYP/6-311+G** level of theory. The results indicate that the mechanism of the title reactions is not the radical mechanism or stepwise SNAr pathway, but the concerted SNAr pathway with a transition state, which is compared with the conclusion of Bolm et al. The reactivity of the title reactions can not be interpreted by the geometric looseness or natural population analysis. Multi parameter fitting reveals that the reactivity of the title reactions is controlled mostly by the regional nucleophilicity index ωN10- of the nucleophile N10 atom or highest occupied molecular orbital energy EHOMO of the reactant, the other factor is the charges of the nucleophilic atom N10, while the charges of the C2 atom and the geometric looseness L% have almost no effect on the reaction energy barrier. The relative energies and the reactivity of the title reactions attained at MP2/6-311+G**//B3LYP/6-311+G** level of theory are better agreement with the experimental results compared with the other methods.
  • 加载中
    1. [1]

      Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.  doi: 10.1021/cr020033s

    2. [2]

      Alamgir, M.; Black, D. St. C.; Kumar, N. Top. Heterocycl. Chem. 2007, 9, 87.

    3. [3]

      Kedar, M. S.; Dighe, N. S.; Pattan, S. R.; Musmade, D. S.; Thakur, D.; Bhosale, M.; Gaware, V. M. Pharma Chem. 2010, 2, 249.

    4. [4]

      Srikanth, L.; Varun Raj, V.; Raghunandan, N.; Venkateshwerlu, L. Pharma Chem. 2011, 3, 172.

    5. [5]

      Narasimhan, B.; Sharma, D.; Kumar, P. Med. Chem. Res. 2012, 21, 269.  doi: 10.1007/s00044-010-9533-9

    6. [6]

      Lin, S. Y.; Isome, Y.; Stewart, E.; Liu, J. F.; Yohannes, D.; Yu, L. Tetrahedron Lett. 2006, 47, 2883.  doi: 10.1016/j.tetlet.2006.02.127

    7. [7]

      Dudd, L. M.; Venardou, E.; Garcia-Verdugo, E.; Licence, P.; Blake, A. J.; Wilson, C.; Poliakoff, M. Green Chem. 2003, 5, 187.  doi: 10.1039/b212394k

    8. [8]

      Zhang, C.; Zhang, L.; Jiao, N. Green Chem. 2012, 14, 3273.  doi: 10.1039/c2gc36416f

    9. [9]

      Chari, M. A.; Shobha, D.; Sasaki, T. Tetrahedron Lett. 2011, 52, 5575.  doi: 10.1016/j.tetlet.2011.08.047

    10. [10]

      Riadi, Y.; Mamouni, R.; Azzalou, R.; Haddad, M. E.; Routier, S.; Guillaumet, G.; Lazar, S. Tetrahedron Lett. 2011, 52, 3492.  doi: 10.1016/j.tetlet.2011.04.121

    11. [11]

      Chari, M. A.; Shobha, D.; Kenawy, E. R.; Al-Deyab, S. S.; Reddy, B. V. S.; Vinu, A. Tetrahedron Lett. 2010, 51, 5195.  doi: 10.1016/j.tetlet.2010.07.132

    12. [12]

      Bahrami, K.; Khodaei, M. M.; Nejatia, A. Green Chem. 2010, 12, 1237.  doi: 10.1039/c000047g

    13. [13]

      Wan, J. P.; Gan, S. F.; Wu, J. M.; Pan, Y. Green Chem. 2009, 11, 1633.  doi: 10.1039/b914286j

    14. [14]

      Saha, D.; Saha, A.; Ranu, B. C. Green Chem. 2009, 11, 733.  doi: 10.1039/b823543k

    15. [15]

      Bahrami, K.; Khodaei, M. M.; Naali, F. Synlett 2009, 569.

    16. [16]

      Sharghi, H.; Aberi, M.; Doroodmand, M. M. Adv. Synth. Catal. 2008, 350, 2380.  doi: 10.1002/adsc.v350:14/15

    17. [17]

      Mukhopadhyay, C.; Tapaswi, P. K. Tetrahedron Lett. 2008, 49, 6237.  doi: 10.1016/j.tetlet.2008.08.041

    18. [18]

      Bahrami, K.; Khodaei, M. M.; Naali, F. J. Org. Chem. 2008, 73, 6835.  doi: 10.1021/jo8010232

    19. [19]

      Zheng, N.; Anderson, K. W.; Huang, X.; Nguyen, H. N.; Buchwald, S. L. Angew. Chem., Int. Ed. 2007, 46, 7509.  doi: 10.1002/(ISSN)1521-3773

    20. [20]

      Zheng, N.; Buchwald, S. L. Org. Lett. 2007, 9, 4749.  doi: 10.1021/ol7020737

    21. [21]

      Zou, B.; Yuan, Q.; Ma, D. Angew. Chem., Int. Ed. 2007, 46, 2598.  doi: 10.1002/(ISSN)1521-3773

    22. [22]

      Diao, X.; Wang, Y.; Jiang, Y.; Ma, D. J. Org. Chem. 2009, 74, 7974.  doi: 10.1021/jo9017183

    23. [23]

      Kim, Y.; Kumar, M. R.; Park, N.; Heo, Y., Lee, S. J. Org. Chem. 2011, 76, 9577.  doi: 10.1021/jo2019416

    24. [24]

      Evindar, G.; Batey, R. A. Org. Lett. 2003, 5, 133.  doi: 10.1021/ol027061h

    25. [25]

      Brain, C. T.; Brunton, S. A. Tetrahedron Lett. 2002, 43, 1893.  doi: 10.1016/S0040-4039(02)00132-6

    26. [26]

      Brain, C. T.; Steer, J. T. J. Org. Chem. 2003, 68, 6814.  doi: 10.1021/jo034824l

    27. [27]

      Peng, J.; Ye, M.; Zong, C.; Hu, F.; Feng, L.; Wang, X.; Wang, Y.; Chen, C. J. Org. Chem. 2011, 76, 716.  doi: 10.1021/jo1021426

    28. [28]

      Brasche, G.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 1932.  doi: 10.1002/(ISSN)1521-3773

    29. [29]

      Xiao, Q.; Wang, W.; Liu, G.; Meng, F.; Chen, J.; Yang, Z.; Shi, Z. Chem. Eur. J. 2009, 15, 7292.  doi: 10.1002/chem.v15:30

    30. [30]

      Wray, B. C.; Stambuli, J. P. Org. Lett. 2010, 12, 4576.  doi: 10.1021/ol101899q

    31. [31]

      Deng, X.; Mani, N. S. Eur. J. Org. Chem. 2010, 4, 680.

    32. [32]

      Shen, M.; Driver, T. G. Org. Lett. 2008, 10, 3367.  doi: 10.1021/ol801227f

    33. [33]

      Cheng, Z.; Zhang, Q. F.; Xu, X. L.; Li, X. N. Chin. J. Org. Chem. 2015, 35(6), 1189 (in Chinese).  doi: 10.6023/cjoc201411031
       

    34. [34]

      Zhao, D. D.; Yu, J. T.; Wang, P. C.; Lu, M. Chin. J. Org. Chem. 2016, 36(1), 165 (in Chinese). (  doi: 10.6023/cjoc201507010
       

    35. [35]

      Yu, Z. T.; Wang, Z. Y.; Wu, X.; Hu, G. Y.; Li, Q. B. Chin. J. Org. Chem. 2016, 36(7), 1672 (in Chinese). (  doi: 10.6023/cjoc201512007
       

    36. [36]

      Meng, Y. X.; Gui, Y. Y.; Ji, Q.; Pan, Y.; L.; Lin, Z. Q.; Lü, L.; Zeng, X. C. Chin. J. Org. Chem. 2016, 36(2), 384 (in Chinese).  doi: 10.6023/cjoc201507023
       

    37. [37]

      Yuan, Y.; Thomé, I.; Kim, S. H.; Chen, D.; Beyer, A.; Bonnamour, J.; Zuidema, E.; Chang, S.; Bolm, C. Adv. Synth. Catal. 2010, 352, 2892.  doi: 10.1002/adsc.v352.17

    38. [38]

      Cano, R.; Ramón, D. J.; Yus, M. J. Org. Chem. 2011, 76, 654.  doi: 10.1021/jo1022052

    39. [39]

      Fang, Y.; Zheng, Y.; Wang, Z. Eur. J. Org. Chem. 2012, 7, 1495.

    40. [40]

      Zou, L. H.; Reball, J.; Mottweiler, J.; Bolm, C. Chem. Commun. 2012, 48, 11307.  doi: 10.1039/c2cc36711d

    41. [41]

      Diness, F.; Fairlie, D. P. Angew. Chem., Int. Ed. 2012, 51, 8012.  doi: 10.1002/anie.v51.32

    42. [42]

      Carmen Pérez-Aguilar, M.; Valdés, C. Angew. Chem., Int. Ed. 2012, 51, 5953.  doi: 10.1002/anie.201200683

    43. [43]

      Jalalian, N.; Petersen, T. B.; Olofsson, B. Chem.-Eur. J. 2012, 18, 14140.  doi: 10.1002/chem.v18.44

    44. [44]

      Majumdar, K. C.; Ganai, S.; Nandi, R. K.; Ray, K. Tetrahedron Lett. 2012, 53, 1553.  doi: 10.1016/j.tetlet.2012.01.015

    45. [45]

      Zhao, J.; Zhao, Y.; Fu, H. Angew. Chem., Int. Ed. 2011, 50, 3769.  doi: 10.1002/anie.v50.16

    46. [46]

      Beyer, A.; Reucher, C. M. M.; Bolm, C. Org. Lett. 2011, 13, 2876.  doi: 10.1021/ol2008878

    47. [47]

      Thomé, I.; Bolm, C. Org. Lett. 2012, 14, 1892.  doi: 10.1021/ol3005134

    48. [48]

      Beyer, A.; Buendia, J.; Bolm, C. Org. Lett. 2012, 14, 3948.  doi: 10.1021/ol301704z

    49. [49]

      Thom, I.; Besson, C.; Kleine, T.; Bolm, C. Angew. Chem., Int. Ed. 2013, 52, 7509.  doi: 10.1002/anie.201300917

    50. [50]

      Xiang, S. K.; Tan, W.; Zhang, D. X.; Tian, X. L.; Feng, C.; Wang, B. Q.; Zhao, K. Q.; Hu, P.; Yang, H. Org. Biomol. Chem. 2013, 11, 7271.  doi: 10.1039/c3ob41479e

    51. [51]

      Baars, H.; Beyer, A.; Kohlhepp, S. V.; Bolm, C. Org. Lett. 2014, 16, 536.  doi: 10.1021/ol403414v

    52. [52]

      Bunnett, J. F.; Zahler, R. E. Chem. Rev. 1951, 49, 273.  doi: 10.1021/cr60153a002

    53. [53]

      Terrier, F. The SNAr Reactions:Mechanistic Aspects, in Modern Nucleophilic Aromatic Substitution, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 2013, pp. 1~84.

    54. [54]

      Hunter, A.; Renfrew, M.; Taylor, J. A.; Whitmore, J. M. J.; Wil-liams, A. J. Chem. Soc., Perkin Trans. 2 1993, 1703.

    55. [55]

      Fernandez, I.; Frenking, G.; Uggerud, E. J. Org. Chem. 2010, 75(9), 2971.  doi: 10.1021/jo100195w

    56. [56]

      Glukhovtsev, M. N.; Bach, R. D.; Laiter, S. J. Org. Chem. 1997, 62(12), 4036.  doi: 10.1021/jo962096e

    57. [57]

      Simkin, B. Y.; Gluz, E. B.; Glukhovtsev, M. N.; Minkin, V. I. J. Mol. Struct. (THEOCHEM) 1993, 284(1~2), 123.

    58. [58]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

    59. [59]

      Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  doi: 10.1103/PhysRevB.37.785

    60. [60]

      Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.  doi: 10.1016/0009-2614(89)87234-3

    61. [61]

      Jr, J. R. P.; Veloso, D. P. Phys. Chem. Chem. Phys. 2008, 10, 1118.  doi: 10.1039/B716159J

    62. [62]

      Cid, M. V. F.; Buijs, W.; Witkamp, G. J. Ind. Eng. Chem. Res. 2007, 46, 941.

    63. [63]

      Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Sos. 2008, 130, 10848.  doi: 10.1021/ja802533u

    64. [64]

      Imoto, M.; Matsui, Y.; Takeda, M.; Tamaki, A.; Taniguchi, H.; Mizuno, K.; Ikeda, H. J. Org. Chem. 2011, 76, 6356.  doi: 10.1021/jo2007219

    65. [65]

      Toledo, R. O.; Santos, J. G.; Ríos, P.; Castro, E. A.; Campodónico, P. R.; Contreras, R. J. Phys. Chem. B 2013, 117, 5908.  doi: 10.1021/jp4005295

    66. [66]

      Toledo, R. O.; Contreras, R.; Tapiab, R. A.; Campodónico, P. R. Org. Biomol. Chem. 2013, 11, 2302.  doi: 10.1039/c3ob27450k

    67. [67]

      Du, L. J.; Wu, C. H.; Gu, H. H.; Li, J. J. Org. Chem. 2015, 35(8), 1726 (in Chinese).
       

    68. [68]

      Glukhovtsev, M. N.; Bach, R. D.; Laiter, S. J. Org. Chem. 1997, 62, 4036.  doi: 10.1021/jo962096e

    69. [69]

      Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.

    70. [70]

      Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027.  doi: 10.1021/cr00031a013

    71. [71]

      Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.  doi: 10.1021/cr00088a005

    72. [72]

      Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.  doi: 10.1007/s00214-007-0310-x

    73. [73]

      Sadowsky, D.; McNeill, K.; Cramer, C. J. Environ. Sci. Technol. 2014, 48, 10904.  doi: 10.1021/es5028822

    74. [74]

      Cairns, A. G.; Senn, H. M.; Murphy, M. P.; Hartley, R. C. Chem. Eur. J. 2014, 20, 3742.  doi: 10.1002/chem.v20.13

    75. [75]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J. A; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand. J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.

    76. [76]

      Glukhovtsev, M. N.; Pross, A.; Radom, L. J. Am. Chem. Soc. 1996, 118, 6273.  doi: 10.1021/ja953665n

    77. [77]

      Li, Q. G.; Mao, S.; Cai, W. F.; Zheng, Y.; Liu, L. X. Chemistry 2016, 79(5), 418(in Chinese). (

    78. [78]

      Shaik, S. S.; Schlegel, H. B.; Wolfe, S. Theoretical Aspects of Physical Organic Chemistry. The SN2 Mechanism, Wiley, New York, 1992, pp. 181~188.

    79. [79]

      Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.

    80. [80]

      Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065.  doi: 10.1021/cr040109f

    81. [81]

      Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520.  doi: 10.1002/(ISSN)1097-461X

    82. [82]

      Contreras, R.; Andres, J.; Safont, V. S.; Campodonico, P.; Santos, J. G. J. Phys. Chem. A 2003, 107(29), 5588.  doi: 10.1021/jp0302865

    83. [83]

      Ormazábal-Toledo, R.; Contreras, R. Adv. Chem. 2014, 2014, 1.

    84. [84]

      Ormazábal-Toledo, R.; Contreras, R.; Campodónico, P. R. J. Org. Chem. 2013, 78, 1091.  doi: 10.1021/jo3025048

    85. [85]

      Ormazábal-Toledo, R.; Campodónico, P. R.; Contreras, R. Org. Lett. 2011, 13, 822.  doi: 10.1021/ol103033j

  • 加载中
    1. [1]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    6. [6]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    7. [7]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    8. [8]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    9. [9]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    10. [10]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    11. [11]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    12. [12]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    13. [13]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    14. [14]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    15. [15]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    16. [16]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    17. [17]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    18. [18]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    19. [19]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    20. [20]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

Metrics
  • PDF Downloads(5)
  • Abstract views(2001)
  • HTML views(805)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return