Citation: Zhang Xiaopeng, Jing Huanzhi, Peng Weiyu, Li Yafang, Fan Xuesen, Zhang Guisheng. Selenium-Catalyzed Carbonylation to Phenylcarbamates and Methylene Diphenyl Dicarbamates[J]. Chinese Journal of Organic Chemistry, ;2017, 37(2): 411-417. doi: 10.6023/cjoc201609013 shu

Selenium-Catalyzed Carbonylation to Phenylcarbamates and Methylene Diphenyl Dicarbamates

  • Corresponding author: Zhang Xiaopeng, zhangxiaopengv@sina.com Zhang Guisheng, zgs@htu.cn
  • Received Date: 12 September 2016
    Revised Date: 12 October 2016

    Fund Project: the Program for Innovative Research Team in Science and Technology in University of Henan Province 15IRTSTHN003the Young Backbone Teachers Training Fund of Education Department of Henan Province 2013GGJS-059the Young Backbone Teachers Training Fund of Henan Normal University 2011-8

Figures(2)

  • A clean, economical and efficient approach to phenylcarbamates and methylene diphenyl dicarbamates was reported. With cheap and easily available nonmetal selenium as the catalyst, carbon monoxide instead of virulent phosgene as the carbonylation reagent, oxygen as the oxidant, the selenium-catalyzed oxidative carbonylation reaction of aniline could proceed smoothly with alcohols to afford phenylcarbamates mostly in moderate to good yields. Then, catalyzed by HCl/ZnCl2, the condensation of formaldehyde with the generated phenylcarbamates gave methylene diphenyl dicarbamates in moderate to good yields. The applicability of the substrates was good. Catalyst selenium could be easily recovered due to its function of phase-transfer catalysis and could be recycled. High atomic economy, low cost, no emission of corrosive waste, and phosgene-free condition make this approach very promising. The possible reaction mechanisms were also proposed.
  • 加载中
    1. [1]

    2. [2]

      (a) Tafesh, A. M.; Weiguny, J. Chem. Rev. 1996, 96, 2035.
      (b) Paul, P. Coord. Chem. Rev. 2000, 203, 269.
      (c) Baba, T.; Kobayashi, A.; Kawanami, Y.; Inazu, K.; Ishikawa, A.; Echizenn, T.; Murai, K.; Aso, S.; Inomata, M. Green Chem. 2005, 7, 159.
      (d) Shi, F.; Deng, Y. Q.; Sima, T. L.; Yang, H. Z. J. Catal. 2001, 203, 525.

    3. [3]

      (a) White, J. D.; Blakemore, P. R.; Milicevic, S. Org. Lett. 2002, 4, 1803.
      (b) Feroci, M.; Casadei, M. A.; Orsini, M.; Palombi, L.; Ines, A. J. Org. Chem. 2003, 68, 1548.
      (c) Deleon, R. G.; Kobayashi, A.; Yamauchi, T.; Ooishi, J.; Baba, T.; Sasaki, M.; Hiarata, F. Appl. Catal., A 2002, 225, 43.

    4. [4]

      (a) Crosby, D. G.; Niemann, C. J. Am. Chem. Soc. 1954, 76, 4458.
      (b) Zhang, A.; Kuwahara, Y.; Hotta, Y.; Tsuda, A. Asian J. Org. Chem. 2013, 2, 572.

    5. [5]

      (a) Uhlig, N.; Li, C. J. Chem.-Eur. J. 2014, 20, 12066.
      (b) Seth, K.; Nautiyal, M.; Purohit, P.; Parikh, N.; Chakraborti, A. K. Chem. Commun. 2015, 51, 191.
      (c) Izawa, Y.; Ishiguro, K.; Tomioka, H. Bull. Chem. Soc. Jpn. 1983, 56, 951.
      (d) Padiya, K. J.; Gavade, S.; Kardile, B.; Tiwari, M.; Bajare, S.; Mane, M.; Gaware, V.; Varghese, S.; Harel, D.; Kurhade, S. Org. Lett., 2012, 14, 2814.
      (e) Kang, W. K.; Wang, G. Y.; Yao, J. Chem. Res. Chin. Univ. 2006, 22, 669.

    6. [6]

      Ragaini, F.; Gasperini, M.; Cenini, S. Adv. Synth. Catal. 2004, 346, 63.

    7. [7]

      Yang, Y.; Lu, S. W. Chin. J. Catal. 1999, 20, 224 (in Chinese).

    8. [8]

    9. [9]

      Stock, C.; Brueckner, R. Adv. Synth. Catal. 2012, 354, 2309.  doi: 10.1002/adsc.v354.11/12

    10. [10]

      (a) Pei, Y. X.; Li, H. Q.; Liu, H. T.; Zhang, Q. H.; Zhang, Y. Chem. Res. Chin. Univ. 2010, 26, 550.
      (b) Kim, S. D.; Lee, K. H. J. Mol. Catal. 1993, 78, 237.

    11. [11]

    12. [12]

      Zhang, X. P.; Li, D. S.; Ma, X. J.; Wang, Y.; Zhang, G. S. Synthesis 2013, 45, 1357.  doi: 10.1055/s-00000084

    13. [13]

      Kang, L. J.; Zhao, X. Q.; An, H. L.; Wan, Y. J. Acta Pet. Sin. 2013, 29, 249 (in Chinese).
       

    14. [14]

      Kianmehr, E.; Baghersad, M. H. Adv. Synth. Catal. 2011, 353, 2599.  doi: 10.1002/adsc.v353.14/15

    15. [15]

      George, D. K.; Moore, D. H.; Brian, W. P.; Garman, J. A. J. Agric. Food Chem. 1954, 2, 356.  doi: 10.1021/jf60027a003

    16. [16]

      Whitmore, F. C.; Popkin, A. H.; Whitaker, J. S.; Mattil, K. F.; Zech, J. D. J. Am. Chem. Soc. 1938, 60, 2462.  doi: 10.1021/ja01277a048

    17. [17]

      Schicktanz, S. T.; Etienne, A. D.; Steele, W. I. Ind. Eng. Chem. Anal. Ed. 1939, 11, 420.  doi: 10.1021/ac50136a003

    18. [18]

      Bayer, F. GB 775723, 1957 [Chem. Abstr. 1957, 51, 90827].

    19. [19]

      Brockway, C. E. US 2806051, 1957 [Chem. Abstr. 1957, 52, 15931].

    20. [20]

      Murphy, W. S.; Raman, K. P. J. Chem. Soc., Perkin Trans. 1 1981, 447.

    21. [21]

      Matthews, K. H.; Mclennaghan, A.; Pethrick, R. A. Brit. Polym. J. 1987, 19, 165.  doi: 10.1002/pi.v19.2

    22. [22]

      Tereshatov, V. V.; Senichev, V. Y. J. Appl. Polym. Sci. 2015, 41481.
       

    23. [23]

      Chapman, T. M. J. Appl. Polym. Sci. Part A: Polym. Chem. 1989, 27, 1993.
       

    24. [24]

      Lu, Q. W.; Hoye, T. R.; Macosko, C. W. Thermoplastic Polyurethane Blends 2002, 2310.
       

  • 加载中
    1. [1]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    2. [2]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    3. [3]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    4. [4]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    5. [5]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    6. [6]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    7. [7]

      Ying Liu Jia Ji Yinling Hou Lilan Guo Xuan Lv . Selenium’s Journey. University Chemistry, 2025, 40(7): 218-224. doi: 10.12461/PKU.DXHX202409046

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    13. [13]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    14. [14]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    20. [20]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

Metrics
  • PDF Downloads(2)
  • Abstract views(1127)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return