Citation: Yang Yu, Cai Tao, Wen Tingbin. Alkenylcarbyne Complexes Derived from the Reactions of OsXCl-(PPh3)3(X=H, Cl) with Propargyl Chloride and Phosphine Ligand-Controlled Transformation of Hydride-Carbyne to Carbene[J]. Chinese Journal of Organic Chemistry, ;2017, 37(1): 176-184. doi: 10.6023/cjoc201608013 shu

Alkenylcarbyne Complexes Derived from the Reactions of OsXCl-(PPh3)3(X=H, Cl) with Propargyl Chloride and Phosphine Ligand-Controlled Transformation of Hydride-Carbyne to Carbene

  • Corresponding author: Wen Tingbin, chwtb@xmu.edu.cn
  • Received Date: 18 August 2016
    Revised Date: 4 September 2016

    Fund Project: the National Natural Science Foundation of China 21072161the National Basic Research Program of Chin 973 Program, 2012CB821600

Figures(5)

  • Reactions of the simple osmium precursors OsHCl (PPh3)3(1) or OsCl2(PPh3)3(2) with 3-chloro-3-methylbut-1-yne afforded OsHCl2(≡CCH=CMe2)(PPh3)2(3) or OsCl3(≡CCH=CMe2)(PPh3)2(4), respectively.Treatment of 3 with Ph2PC≡CPh led to the formation of the tris-diphenyl (phenylethynyl) phosphine alkenylcarbene complex OsCl2(=CHCH=CMe2)(Ph2PC≡CPh)3(5), while complex 4 underwent simple phosphine ligand substitution with Ph2PC≡CPh to give OsCl3(≡CCH=CMe2)(Ph2PC≡CPh)2(6).Presumably, upon the phosphine ligand substitution of PPh3 in 3 by Ph2PC≡CPh, the relatively electron-poor nature of the later decreased the electron density of the osmium center, and thus promoted the transformation of the hydride-carbyne to carbene via the 1, 2-shift of the hydride ligand from Os to the carbyne carbon, which was then further facilitated by the coordination of a third less bulky Ph2PC≡CPh ligand to the osmium center to give the stable 18e product 5.
  • 加载中
    1. [1]

      For selected general reviews on the chemistry of transition metal carbyne complexes see:
      (a) Fischer, H.; Hofmann, P.; Kreissl, F. R.; Schrock, R. R.; Schubert, U.; Weiss, K. In Carbyne Complexes, VCH, Weinheim, Germany, 1988.
      (b) Maya, A.; Hoffmeister, H. Adv. Organomet. Chem. 1991, 32, 227.
      (c) Engel, P. F.; Pfeffer, M. Chem. Rev. 1995, 95, 2281.
      (d) Schrock, R. R. J. Chem. Soc., Dalton Trans. 2001, 2541.
      (e) Schrock, R. R. Chem. Rev. 2002, 102, 145.
      (f) Shi, C.; Jia, G. Coord. Chem. Rev. 2013, 257, 666.
      (g) Herndon, J. W. Coord. Chem. Rev. 2016, 317, 1;

    2. [2]

      For selective reviews on alkyne metathesis see:
      (a) Fürstner, A. Angew. Chem., Int. Ed. 2013, 52, 2794 and references cited therein.
      (b) Schrock, R. R. Angew. Chem., Int. Ed. 2006, 45, 3748.
      (c) Zhang, W.; Moore, J. S. Adv. Synth. Catal. 2007, 349, 93.
      (d) Fürstner, A.; Davies, P. W. Chem. Commun. 2005, 2307.
      (e) Bunz, H. F. Acc. Chem. Res. 2001, 34, 998

    3. [3]

      Selected recent examples of alkyne metathesis:
      (a) on Kugelgen, S.; Bellone, D. E.; Cloke, R. R.; Perkins, W. S.; Fischer, F. R. J. Am. Chem. Soc. 2016, 138, 6234.
      (b) Wang, Q.; Yu, C.; Long, H.; Du, Y.; Jin, Y.; Zhang, W. Angew. Chem., Int. Ed. 2015, 54, 7550.
      (c) Ralston, K. J.; Ramstadius, H. C.; Brewster, R. C.; Niblock, H. S.; Hulme, A. N. Angew. Chem., Int. Ed. 2015, 54, 7086.
      (d) Haberlag, B.; Freytag, M.; Jones, P. G.; Tamm, M. Adv. Synth. Catal. 2014, 356, 1255.
      (e) Lhermet, R.; Fürstner, A. Chem. Eur. J. 2014, 20, 13188.
      (f) Li, S. T.; Schnabel, T.; Lysenko, S.; Brandhorst, K.; Tamm, M. Chem. Commun. 2013, 49, 7189.
      (g) Yang, H.; Jin, Y.; Du, Y.; Zhang, W. J. Mater. Chem. A 2014, 2, 5986.
      (h) Heppekausen, J.; Stade, R.; Goddard, R.; Fürstner, A. J. Am. Chem. Soc. 2010, 132, 11045.
      (i) Weissman, H.; Plunkett, K. N.; Moore, J. S. Angew. Chem., Int. Ed. 2006, 45, 585.

    4. [4]

      For reviews on osmium carbyne complexes see:
      (a) Bolanño, T.; Esteruelas, M. A.; Oñate, E. J. Organomet. Chem. 2011, 696, 3911.
      (b) Jia, G.. Coord. Chem. Rev. 2007, 251, 2167.
      (c) Roper, W. R. In Transition Metal Carbyne Complexes, Ed.: Kreissl, F. R., Kluwer Academic: Dordrecht, The Netherlands, 1993, 155.
      (d) Gallop, M. A.; Roper, W. R. Adv. Organomet. Chem. 1986, 25, 121.

    5. [5]

    6. [6]

      (a) Buil, M. L.; Cardo, J. J. F.; Esteruelas, M. A.; Oñate, E. Organometallics 2016, 35, 2171.
      (b) Buil, M. L.; Cardo, J. J. F.; Esteruelas, M. A.; Fernández, I.; Oñate, E. Organometallics 2014, 33, 2689.
      (c) Bolaño, T.; Castarlenas, R.; Esteruelas, M. A.; Modrego, F. J.; Oñate, E. J. Am. Chem. Soc. 2005, 127, 11184.
      (d) Barrio, P.; Esteruelas, M. A.; Oñate, E. J. Am. Chem. Soc. 2004, 126, 1946.

    7. [7]

    8. [8]

      (a) Cao, X.-Y.; Zhao, Q.; Lin, Z.; Xia, H. Acc. Chem. Res. 2014, 47, 341.
      (b) Chen, J.; Huang, Z.-A.; Lu, Z.; Zhang, H.; Xia, H. Chem. Eur. J. 2016, 22, 5363.
      (c) Zhu, C.; Yang, Y.; Luo, M.; Yang, C.; Wu, J.; Chen, L.; Liu, G.; Wen, T.; Zhu, J.; Xia, H. Angew. Chem., Int. Ed. 2015, 54, 6181.
      (d) Zhu, C.; Li, S.; Luo, M.; Zhou, X.; Niu, Y.; Lin, M.; Zhu, J.; Cao, Z.; Lu, X.; Wen, T.; Xie, Z.; Schleyer, P. V. R.; Xia, H. Nat. Chem. 2013, 5, 698.
      (e) Liu, B.; Xie, H.; Wang, H.; Wu, L.; Zhao, Q.; Chen, J.; Wen, T. B.; Cao, Z.; Xia, H. Angew. Chem., Int. Ed. 2009, 48, 5461.
      (f) Liu, B.; Wang, H.; Xie, H.; Zeng, B.; Chen, J.; Tao, J.; Wen, T. B.; Cao, Z.; Xia, H. Angew. Chem., Int. Ed. 2009, 48, 5430.

    9. [9]

      Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 4th ed., John Wiley & Sons, New York, 2005, pp. 309~340.

    10. [10]

      (a) Mayr, A.; Asaro, M. F.; Kjelsberg, M. A.; Lee, K. S.; Van Engen, D. Organometallics 1987, 6, 432.
      (b) Doyle, R. A.; Angelici, R. J. Organometallics 1989, 8, 2207.
      (c) Blosch, L. L.; Abboud, K.; Boncella, J. M. J. Am. Chem. Soc. 1991, 113, 7066.
      (d) Bastos, C. M.; Daubenspeck, N.; Mayr, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 743.
      (e) Giannini, L.; Solari, E.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. J. Am. Chem. Soc. 1998, 120, 823.
      (f) Bannwart, E.; Jacobsen, H.; Furno, F.; Berke, H. Organometallics2000, 19, 3605.

    11. [11]

      Boone, M. P.; Brown, C. C.; Ancelet, T. A.; Stephan, D. W. Organometallics 2010, 29, 4369.  doi: 10.1021/om100707a

    12. [12]

      Esteruelas, M. A.; López, A. M.; Oliván, M. Coord. Chem. Rev. 2007, 251, 795.  doi: 10.1016/j.ccr.2006.07.008

    13. [13]

      (a) Bolaño, T.; Castarlenas, R.; Esteruelas, M. A.; Oñate, E. Organometallics 2007, 26, 2037.
      (b) Bolaño, T.; Castarlenas, R.; Esteruelas, M. A.; Oñate, E. J. Am. Chem. Soc. 2007, 129, 8850.
      (c) Buil, M. L.; Esteruelas, M. A.; Garceás, K.; Oníate, E. Organometallics 2009, 28, 5691.

    14. [14]

      (a) Esteruelas, M. A.; González, A. I.; López, A. M.; Oñate, E. Organometallics 2003, 22, 414.
      (b) Esteruelas, M. A.; González, A. I.; López, A. M.; Oñate, E. Organometallics 2004, 23, 4858.
      (c) Castarlenas, R.; Esteruelas, M. A.; Oñate, E. Organometallics 2007, 26, 2129.
      (d) Buil, M. L.; Esteruelas, M. A.; Garceás, K.; Olivaán, M.; Oníate, E. Organometallics 2008, 27, 4680.

    15. [15]

      Ozerov, O. V.; Watson, L. A.; Pink, M.; Caulton, K. G. J. Am. Chem. Soc. 2007, 129, 6003.  doi: 10.1021/ja062327r

    16. [16]

      Caulton, K. G. J. Organomet. Chem. 2001, 617~618, 56.
       

    17. [17]

      (a) Ferrando, G.; Gérard, H.; Spivak, G. J.; Coalter Ⅲ, J. N.; Huffman, J. C.; Eisenstein, O.; Caulton, K. G. Inorg. Chem. 2001, 40, 6610.
      (b) Ferrando-Miguel, G.; Gérard, H.; Eisenstein, O.; Caulton, K. G. Inorg. Chem. 2002, 41, 6440.
      (c) Ferrando, G.; Coalter, J. N.; Gerard, H.; Huang, D.; Eisenstein, O.; Caulton, K. G. New J. Chem. 2003, 27, 1451.
      (d) Grünwald, G.; Gevert, O.; Wolf, J.; González-Herrero, P.; Werner, H. Organometallics 1996, 15, 1960.

    18. [18]

      (a) Espuelas, J.; Esteruelas, M. A.; Lahoz, F. J.; Oro, L. A.; Ruiz, N. J. Am. Chem. Soc. 1993, 115, 4683.
      (b) Collado, A.; Esteruelas, M. A.; López, F.; Mascareñas, J. L.; Oñate, E.; Trillo, B. Organometallics 2010, 29, 4966.
      (c) Collado, A.; Esteruelas, M. A.; Oñate, E. Organometallics 2011, 30, 1930.

    19. [19]

      Spivak, G. J.; Coalter, J. N.; Olivan, M.; Eisenstein, O.; Caulton, K. G. Organometallics 1998, 17, 999.  doi: 10.1021/om9711382

    20. [20]

      (a) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746.
      (b) Grubbs, R. H. Tetrahedron 2004, 60, 7117.
      (c) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18.

    21. [21]

      Grubbs has reported the reaction of OsCl2(PPh3)3 with diphenylcyclopropene to afford OsCl2(=CHCH=CPh2)(PPh3)2, but no experimental evidence has been given, see:
      (a) Nguyen, S. T.; Johnson, L. K.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1992, 114, 3974.
      (b) Grubbs, R. H.; Schwab, P.; Nguyen, S. T. United States PatentWO 9706185, 1997 [Chem. Abstr.1997, 126, 238816].

    22. [22]

      Wilhelm, T. E.; Belderrain, T. R.; Brown, S. N.; Grubbs, R. H. Organometallics 1997, 16, 3867.  doi: 10.1021/om9705259

    23. [23]

      (a) Volland, M. A. O.; Rominger, F.; Eisenträger, F.; Hofmann, P. J. Organomet. Chem. 2002, 641, 220.
      Related syntheses of a series of ruthenium alkenylcarbenes RuCl2(=CHCH=CR1R2)(dtbpm) with a chelating ligand bis (di-tert-butyl-phosphanyl) methane t-Bu2PCH2Pt-Bu2 (dtbpm) from the reactions of a dinuclear ruthenium hydride [RuH (μ2-Cl)-(dtbpm)]2 with propargylic chlorides HC≡CC (Cl) R1R2have also been reported by Hofmann:
      (b) Hansen, S. M.; Rominger, F.; Metz, M.; Hofmann, P. Chem.-Eur. J. 1999, 5, 557.
      (c) Hansen, S. M.; Volland, M. A. O.; Rominger, F.; Eisenträger, F.; Hofmann, P. Angew. Chem., Int. Ed. 1999, 38, 1273.

    24. [24]

      Amoroso, D.; Snelgrove, J. L.; Conrad, J. C.; Drouin, S. D.; Yap, G. P. A.; Fogg, D. E. Adv. Synth. Catal. 2002, 344, 757.  doi: 10.1002/1615-4169(200208)344:6/7<757::AID-ADSC757>3.0.CO;2-X

    25. [25]

      Werner, H.; Jung, S.; Weberndörfer, B.; Wolf, J. Eur. J. Inorg. Chem. 1999, 1999, 951.  doi: 10.1002/(ISSN)1099-0682

    26. [26]

      Ferrando, G.; Caulton, K. G. Inorg. Chem. 1999, 38, 4168.  doi: 10.1021/ic981402z

    27. [27]

      (a) Bustelo, E.; Jiménez-Tenorio, M.; Mereiter, K.; Puerta, M. C.; Valerga, P. Organometallics 2002, 21, 1903.
      (b) Esteruelas, M. A.; Oliván, M.; Oñate, E. Organometallics 1999, 18, 2953.
      (c) Crochet, P.; Esteruelas, M. A.; López, A. M.; Martinez, M. P.; Olivaán, M.; Oníate, E.; Ruiz, N. Organometallics 1998, 17, 4500.

    28. [28]

      Bruce, M. I. Chem. Rev. 1991, 91, 197.
      (b) Bruce, M. I. Chem. Rev. 1998, 98, 2797.

    29. [29]

      (a) Wen, T. B.; Yang, S. Y.; Zhou, Z. Y.; Lin, Z.; Lau, C. P.; Jia, G. Organometallics 2000, 19, 3757.
      (b) Wen, T. B.; Zhou, Z. Y.; Jia, G. Angew. Chem., Int. Ed. 2001, 40, 1951.
      (c) Wen, T. B.; Hung, W. Y.; Sung, H. H. Y.; Williams, I. D.; Jia, G. J. Am. Chem. Soc. 2005, 127, 2856.
      (d) Wen, T. B.; Lee, K.-H.; Chen, J.; Hung, W. Y.; Bai, W.; Li, H.; Sung, H. H. Y.; Williams, I. D.; Lin, Z.; Jia, G. Organometallics 2016, 35, 1514.

    30. [30]

      Collado, A.; Esteruelas, M. A.; López, F.; Mascareñas, J. L.; Oñate, E.; Trillo, B. Organometallics 2010, 29, 4966.  doi: 10.1021/om100192t

    31. [31]

      Spivak, G. J.; Caulton, K. G. Organometallics 1998, 17, 5260.  doi: 10.1021/om980597f

    32. [32]

      Hoffmann, P. R.; Caulton, K. G. J. Am. Chem. Soc. 1975, 97, 4221.  doi: 10.1021/ja00848a012

    33. [33]

      Kondoh, A.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2007, 129, 4099.  doi: 10.1021/ja070048d

  • 加载中
    1. [1]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    2. [2]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    3. [3]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    6. [6]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    7. [7]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    8. [8]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    11. [11]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    12. [12]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    13. [13]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    14. [14]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    15. [15]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    16. [16]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    17. [17]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    20. [20]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

Metrics
  • PDF Downloads(2)
  • Abstract views(860)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return