Citation: Li Juanhua, Liu Kunming, Duan Xinfang, Liu Jinbiao. Recent Progress in Iron Catalyzed C-C Coupling Reactions[J]. Chinese Journal of Organic Chemistry, ;2017, 37(2): 314-334. doi: 10.6023/cjoc201608009 shu

Recent Progress in Iron Catalyzed C-C Coupling Reactions

  • Corresponding author: Liu Kunming, liukunminglkm@sina.com
  • Received Date: 16 August 2016
    Revised Date: 22 September 2016

    Fund Project: the National Natural Science Foundation of China 21502075the National Natural Science Foundation of China 21372031

Figures(38)

  • Transition-metal-catalyzed coupling reactions play an important role in construct C-C bond. As one of the most abundant metal in the earth's crust, along with its inexpensive price, relatively low toxicity and multiple redox states, Fe is an ideal catalyst for coupling reactions. Recently, green, highly effective and selective reactions have attracted much attention, which accelerated the research of iron catalyzed coupling. Particularly, many new catalyst systems and various reaction types such as iron catalyzed oxidative coupling, reductive coupling and C-H direct functionalization were explored during the past decade. The present review surveys the recent progress in Fe catalyzed C-C coupling concerning their reaction types, including mechanism and application. Furthermore, the prospects of this reaction are also discussed.
  • 加载中
    1. [1]

      (a) De Mejiere, A.; Diederich, F. Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, Weinheim, 2004.
      (b) Hartwig, J. F. Organotransition Metal Chemistry, University Science Books, Sausalito, California, 2010.
      (c) Liu, C.; Zhang, H.; Shi, W.; Lei, A. W. Chem. Rev. 2011, 111, 1780.

    2. [2]

      (a) Graening, T.; Schmalz, H.-G. Angew. Chem., Int. Ed. 2003, 42, 2580.
      (b) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4490.
      (c) Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177.

    3. [3]

      (a) Wu, X.-F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 9047.
      (b) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.

    4. [4]

      Van Leeuwen, P. N. M.; Kamer, P. C. J.; Claver, C.; Pamies, O.; Dieguez, M. Chem. Rev. 2011, 111, 2077.  doi: 10.1021/cr1002497

    5. [5]

    6. [6]

    7. [7]

      (a) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217.
      (b) Plietker, B. Iron Catalysis in Organic Chemistry: Reactions and Applications, Wiley-VCH, Weinheim, 2008.
      (c) Sherry, B. D.; Fürstner, A. Acc. Chem. Res. 2008, 41, 1500.
      (d) Fürstner, A. Angew. Chem., Int. Ed. 2009, 48, 1364.
      (e) Cahiez, G.; Moyeux, A. Chem. Rev. 2010, 110, 1435.

    8. [8]

    9. [9]

      Kharasch, M. S.; Fields, E. K. J. Am. Chem. Soc. 1941, 63, 2316.  doi: 10.1021/ja01854a006

    10. [10]

      (a) Kochi, J. K. J. Am. Chem. Soc. 1971, 93, 1487.
      (b) Kochi, J. K. J. Org. Chem. 1976, 41, 599.

    11. [11]

      Walborsky, H. M. J. Org. Chem. 1981, 46, 5074.  doi: 10.1021/jo00338a004

    12. [12]

      Molander, G. A. Tetrahedron Lett. 1983, 24, 5449.  doi: 10.1016/S0040-4039(00)94109-1

    13. [13]

      (a) Cahiez, G. Synthesis 1998, 1199.
      (b) Cahiez, G. Synlett 2001, 1901.
      (c) Cahiez, G.; Avedissian, H. Tetrahedron Lett. 1998, 39, 6159.
      (d) Cahiez, G.; Marquais, S. Pure Appl. Chem. 1996, 68, 53.

    14. [14]

      (a) Fürstner, A.; Leitner, A. Angew. Chem., Int. Ed. 2002, 41, 609.
      (b) Fürstner, A.; Leitner, A.; Méndez, M.; Krause, H. J. Am. Chem. Soc. 2002, 124, 13856.

    15. [15]

      (a) Fürstner, A.; Leitner, A. Angew. Chem., Int. Ed. 2003, 42, 308.
      (b) Fürstner, A.; Souza, D. D.; Rapado, L. P.; Jensen, J. T. Angew. Chem., Int. Ed. 2003, 42, 5358.
      (c) Fürstner, A.; Turet, L. Angew. Chem., Int. Ed. 2005, 44, 3462.

    16. [16]

      Scheiper, B.; Bonnekessel, M.; Krause, H.; Fürstner, A. J. Org. Chem. 2004, 69, 3949.
       

    17. [17]

      Seidel, G.; Laurich, D.; Fürstner, A. J. Org. Chem. 2004, 69, 3950.  doi: 10.1021/jo049885d

    18. [18]

      (a) Jonas, K.; Schieferstein, L.; KrMger, C.; Tsay, Y.-H. Angew. Chem., Int. Ed. Engl. 1979, 18, 550.
      (b) Jonas, K.; Schieferstein, L. Angew. Chem., Int. Ed. Engl. 1979, 18, 549.

    19. [19]

      Hocek, M.; Dvořákova, H. J. Org. Chem. 2003, 68, 5773.  doi: 10.1021/jo034351i

    20. [20]

      Ottesen, L. K.; Fredrik, E. K.; Olsson, R. Org. Lett. 2006, 8, 1771.  doi: 10.1021/ol0600234

    21. [21]

      Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 3686.  doi: 10.1021/ja049744t

    22. [22]

      Martin, R.; Fürstner, A. Angew. Chem., Int. Ed. 2004, 43, 3955.  doi: 10.1002/(ISSN)1521-3773

    23. [23]

      Cahiez, G.; Habiak, V.; Duplais, C.; Moyeux, A. Angew. Chem., Int. Ed. 2007, 46, 4364.  doi: 10.1002/(ISSN)1521-3773

    24. [24]

      Cahiez, G.; Duplais, C.; Moyeux, A. Org. Lett. 2007, 9. 325.

    25. [25]

      Gurinot, A.; Reymond, S.; Cossy, J. Angew. Chem., Int. Ed. 2007, 46, 6521.  doi: 10.1002/(ISSN)1521-3773

    26. [26]

      Gurinot, A.; Lepesqueux, G.; Sable, S.; Reymond, S.; Cossy, J. J. Org. Chem. 2010, 75, 5151.  doi: 10.1021/jo100871m

    27. [27]

      (a) Bedford, R. B.; Bruce, D. W.; Frost, R. M.; Goodbyb, J. W.; Hirdb, M. Chem. Commun. 2004, 2822.
      (b) Bedford, R. B.; Bruce, D. W.; Frost, R. M.; Hirdb, M. Chem. Commun. 2005, 4161.

    28. [28]

      Chowdhury, R. R.; Crane, A. K.; Fowler, C.; Kwong, P.; Kozak, C. M. Chem. Commun. 2008, 94.

    29. [29]

      Yamaguchi, Y.; Ando, H.; Nagaya, M.; Hinago, H.; Ito, T.; Asami, M. Chem. Lett. 2011, 40, 983.  doi: 10.1246/cl.2011.983

    30. [30]

      Bedford, R. B.; Betham, M.; Bruce, D. W.; Danopoulos, A. A.; Robert, M. F.; Michael, H. J. Org. Chem. 2006, 71, 1104.  doi: 10.1021/jo052250+

    31. [31]

      Bedford, R. B.; Huwea, M.; Wilkinson, M. C. Chem. Commun. 2009, 600.

    32. [32]

      Hatakeyama, T.; Kondo, Y.; Fujiwara, Y.-I.; Takaya, H.; Ito, S.; Nakamura, E.; Nakamura, M. Chem. Commun. 2009, 1216.
       

    33. [33]

      (a) Tamura, M.; Kochi, J. J. Organomet. Chem. 1971, 31, 289.
      (b) Tamura, M.; Kochi, J. K. Bull. Chem. Soc. Jpn. 1971, 44, 3063.

    34. [34]

      Adams, C. J.; Bedford, R. B.; Carter, E.; Gower, N. J.; Haddow, M. F.; Harvey, J. N.; Huwe, M.; Cartes, M. Á.; Mansell, S. M.; Mendoza, C.; Murphy, D. M.; Neeve, E. C.; Nunn, J. J. Am. Chem. Soc. 2012, 134, 10333.  doi: 10.1021/ja303250t

    35. [35]

      Bedford, R. B.; Carter, E.; Cogswell, P. M.; Gower, N. J.; Haddow, M. F.; Harvey, J. N.; Murphy, D. M.; Neeve, E. C.; Nunn, J. Angew. Chem., Int. Ed. 2013, 52, 1285.  doi: 10.1002/anie.201207868

    36. [36]

      Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2012, 111, 1417.
       

    37. [37]

      (a) Hatakeyama, T.; Hashimoto, T.; Kondo, Y.; Fujiwara, Y.; Seike, H.; Takaya, H.; Tamada, Y.; Ono, T.; Nakamura, M. J. Am. Chem. Soc. 2010, 132, 10674.
      (b) Hashimoto, T.; Hatakeyama, T.; Nakamura, M. J. Org. Chem. 2012, 77, 1168.
      (c) Hatakeyama, T.; Hashimoto, T.; Kathriarachchi, K. K. A. D. S.; Zenmyo, T.; Seike, H.; Nakamura, M. Angew. Chem., Int. Ed. 2012, 124, 1.
      (d) Nakagawa, N.; Hatakeyama, T.; Nakamura, M. Chem. Lett. 2015, 44, 486.

    38. [38]

      Bedford, R. B.; Brenner, P. B.; Carter, E.; Clifton, J.; Cogswell, P. M.; Gower, N. J.; Haddow, M. F.; Harvey, J. N.; Kehl, J. A.; Murphy, D. M.; Neeve, E. C.; Neidig, M. L.; Nunn, J.; Snyder, B. E. R.; Taylor, J. Organometallics 2014, 33, 5767.  doi: 10.1021/om500518r

    39. [39]

      Nakamura, M.; Hirai, A.; Nakamura, E. J. Am. Chem. Soc. 2000, 122, 978.  doi: 10.1021/ja983066r

    40. [40]

      Jin, M.; Adak, L.; Nakamura, M. J. Am. Chem. Soc. 2015, 137, 7128.  doi: 10.1021/jacs.5b02277

    41. [41]

      Jin, M.; Nakamura, M. Chem. Lett. 2011, 40, 1012.  doi: 10.1246/cl.2011.1012

    42. [42]

      Cahiez, G.; Marquais, S. Pure Appl. Chem. 1996, 68, 53..
       

    43. [43]

      (a) Sapountzis, I.; Lin, W. W.; Kofink, C. C.; Despotopoulou, C.; Knochel, P. Angew. Chem., Int. Ed. 2005, 44, 1654.
      (b) Kofink, C. C.; Blank, B.; Pagano, S.; Gótz, N.; Knochel, P. Chem. Commun. 2007, 1954.

    44. [44]

      (a) Hatakeyama, T.; Nakagawa, N.; Nakamura, M. Org. Lett. 2009, 11, 4496.
      (b) Ito, S.; Fujiwara, Y.-I.; Nakamura, E.; Nakamura, M. Org. Lett. 2009, 11, 4306.

    45. [45]

      Cahiez, G.; Habiak, V.; Gager, O. Org. Lett. 2008, 10, 2389.  doi: 10.1021/ol800816f

    46. [46]

      Li, B.-J.; Xu, L.; Wu, Z.-H.; Guan, B.-T.; Sun, C.-L.; Wang, B.-Q.; Shi, Z.-J. J. Am. Chem. Soc. 2009, 131, 14656.  doi: 10.1021/ja907281f

    47. [47]

      Agrawal, T.; Cook, S. P. Org. Lett. 2013, 15, 96.  doi: 10.1021/ol303130j

    48. [48]

      Itami, K.; Higashi, S.; Mineno, M.; Yoshida, J.-I. Org. Lett. 2005, 7, 1219.  doi: 10.1021/ol047504c

    49. [49]

      Denmark, S. E.; Cresswell, A. J. J. Org. Chem. 2013, 78, 12593.  doi: 10.1021/jo402246h

    50. [50]

      Chandra, M.; Volla, R.; Vogel, P. Angew. Chem., Int. Ed. 2008, 47, 1305.  doi: 10.1002/(ISSN)1521-3773

    51. [51]

      Dongol, K. G.; Koh, H.; Sau, M. and Chai, C. L. L. Adv. Synth. Catal. 2007, 349, 1015.  doi: 10.1002/(ISSN)1615-4169

    52. [52]

      Hatakeyama, T.; Hashimoto, T.; Kathriarachchi, K. K. A. D. S.; Zenmyo, T.; Seike, H.; Nakamura, M. Angew. Chem., Int. Ed. 2012, 51, 8834.  doi: 10.1002/anie.v51.35

    53. [53]

      Hatakeyama, T.; Yoshimoto, Y.; Gabriel, T.; Nakamura, M. Org. Lett. 2008, 10, 5341.  doi: 10.1021/ol8020226

    54. [54]

      Xie, X.; Xu, X. B.; Li, H. F.; Xu, X. L.; Yang, J. Y.; Lia, Y. Z. Adv. Synth. Catal. 2009, 351, 1263.  doi: 10.1002/adsc.v351:9

    55. [55]

      Carril, M.; Correa, A.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 4862.  doi: 10.1002/(ISSN)1521-3773

    56. [56]

      Mao, J. C.; Xie, G. L.; Wu, M. Y.; Guo, J.; Ji, S. J. Adv. Synth. Catal. 2008, 350, 2477.  doi: 10.1002/adsc.v350:16

    57. [57]

      Chandra, M.; Volla, R.; Vogel, P. Tetrahedron Lett. 2008, 49, 5961.  doi: 10.1016/j.tetlet.2008.07.151

    58. [58]

      Hatakeyama, T.; Okada, Y.; Yoshimoto, Y.; Nakamura M. Angew. Chem., Int. Ed. 2011, 50, 10973.  doi: 10.1002/anie.v50.46

    59. [59]

      Nakagawa, N.; Hatakeyama, T.; Nakamura, M. Chem. Lett. 2015, 44, 486.  doi: 10.1246/cl.141167

    60. [60]

      Cheung, C. W.; Ren, P.; Hu, X. L. Org. Lett. 2014, 16, 2566.  doi: 10.1021/ol501087m

    61. [61]

      Quintin, J.; Franck, X.; Hocquemiller, R.; Figadère, B. Tetrahe-dron Lett. 2002, 43, 3547.  doi: 10.1016/S0040-4039(02)00568-3

    62. [62]

      Ludovic, B.; Mirca, D.; Alain, T.; Nelly, P. J. Heterocycl. Chem. 2005, 42, 1423.  doi: 10.1002/jhet.v42:7

    63. [63]

      Kuzmina, O. M.; Steib, A. K.; Flubacher, D.; Knochel, P. Org. Lett. 2012, 14, 4818.  doi: 10.1021/ol302136c

    64. [64]

      Kuzmina, O. M.; Steib, A. K.; Markiewicz, J. T.; Flubacher, D.; Knochel, P. Angew. Chem., Int. Ed. 2013, 52, 4945.  doi: 10.1002/anie.v52.18

    65. [65]

      Hatakeyama, T.; Nakamura, M. J. Am. Chem. Soc. 2007, 129, 9844.  doi: 10.1021/ja073084l

    66. [66]

      Hatakeyama, T.; Hashimoto, S.; Ishizuka, K.; Nakamura, M. J. Am. Chem. Soc. 2009, 131, 11949.  doi: 10.1021/ja9039289

    67. [67]

      Agrawal, T.; Cook, S. P. Org. Lett. 2014, 16, 5080.  doi: 10.1021/ol5024344

    68. [68]

      (a) Liu, C.; Zhang, H.; Shi, W.; Lei, A. W. Chem. Rev. 2011, 1780.
      (b) Shi, W.; Liu, C.; Lei, A. W. Chem. Soc. Rev. 2011, 40, 2761.

    69. [69]

      Selected reviews:
      (a) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176.
      (b) Fu, G. C. Acc. Chem. Res. 2008, 41, 1555.
      (c) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
      (d) Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008, 41, 1440.
      (e) Fortman, G. C.; Nolan, S. P. Chem. Soc. Rev. 2011, 40, 5151.

    70. [70]

      Selected reviews:
      (a) Mulvey, R. E.; Mongin, F.; Uchiyama, M.; Kondo, Y. Angew. Chem., Int. Ed. 2007, 46, 3802.
      (b) Haag, B.; Mosrin, M.; Ila, H.; Malakhov, V.; Knochel, P. Angew. Chem., Int. Ed. 2011, 50, 9794.
      (c) Mongin, F.; Harrison-Marchand, A. Chem. Rev. 2013, 113, 7563.
      (d) Klatt, T.; Markiewicz, J. T. Sämann, C.; Knochel, P. J. Org. Chem. 2014, 79, 4253.

    71. [71]

      Nagano, T.; Hayashi, T. Org. Lett. 2005, 7, 491.  doi: 10.1021/ol047509+

    72. [72]

      Cahiez, G.; Chaboche, C.; Betzer, F. M.; Ahr, M. Org. Lett. 2005, 7, 1943.  doi: 10.1021/ol050340v

    73. [73]

      Cahiez, G.; Moyeux, A.; Buendia, J.; Duplais, C. J. Am. Chem. Soc. 2007, 129, 13788.  doi: 10.1021/ja075417k

    74. [74]

      Liu, W.; Lei, A. W. Tetrahedron Lett. 2008, 49, 610.  doi: 10.1016/j.tetlet.2007.11.144

    75. [75]

      Truong, T.; Alvarado, J.; Tran, L. D.; Daugulis, O. Org. Lett. 2010, 12, 1200.  doi: 10.1021/ol902970z

    76. [76]

      Cahiez, G.; Foulgoc, L.; Moyeux, A. Angew. Chem., Int. Ed. 2009, 48, 2969.  doi: 10.1002/anie.200900175

    77. [77]

      Liu, K. M.; Liao, L. Y.; Duan, X. F. Chem. Commun. 2015, 51, 1124.  doi: 10.1039/C4CC08494B

    78. [78]

      Liu, K. M.; Wei, J.; Duan, X. F. Chem. Commun. 2015, 51, 4655.  doi: 10.1039/C5CC00514K

    79. [79]

      Xu, X. L.; Cheng, D. P.; Pei, W. J. Org. Chem. 2006, 71, 6637.  doi: 10.1021/jo060673l

    80. [80]

      Sridevi, V. S.; Leong, W. -K. Tetrahedron Lett. 2007, 48, 6669.  doi: 10.1016/j.tetlet.2007.07.120

    81. [81]

      Czaplik, W. M.; Mayer, M.; von Wangelin, A. J. ChemCatChem 2011, 3, 135  doi: 10.1002/cctc.201000276

    82. [82]

      For selected literatues on Pd catalyzed C-H activation:
      (a) Jia, C.; Piao, D.; Oyamada, J.; Lu, W.; Kitamura, T.; Fujiwara, Y. Science 2000, 287, 1992.
      (b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
      (c) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
      Ir catalyzed C-H activation:
      (d) Cho, J.-Y.; Tse, M. K.; Holmes, D. R.; Maleczka, E., Jr.; Smith, M. R., Ⅲ Science 2002, 295, 305.
      (e) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.
      Ru catalyzed C-H activation:
      (f) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731.
      (g) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. Pt catalyzed C-H activation:
      (h) Lersch, M.; Tilset, M. Chem. Rev. 2005, 105, 2471.
      (i) Yang, S.; Li, Z.; Jian, X.; He, C. Angew. Chem., Int. Ed. 2009, 48, 3999.

    83. [83]

      Jones, W. D.; Foster, G. P.; Putinas, J. M. J. Am. Chem. Soc. 1987, 109, 5047.  doi: 10.1021/ja00250a060

    84. [84]

      Wen, J.; Zhang, J.; Chen, S.-Y.; Li, J.; Yu, X.-Q. Angew. Chem., Int. Ed. 2008, 47, 8897.  doi: 10.1002/anie.v47:46

    85. [85]

      Wen, J.; Qin, S.; Ma, L.-F.; Dong, L.; Zhang, J.; Liu, S.-S.; Duan, Y.-S.; Chen, S.-Y.; Hu, C.-W.; Yu X.-Q. Org. Lett. 2010, 12, 2694.  doi: 10.1021/ol100838m

    86. [86]

      Deb, A.; Manna, S.; Maji, A.; Dutta, U.; Maiti, D. Eur. J. Org. Chem. 2013, 5251.
       

    87. [87]

      Liu, W.; Cao, H.; Lei, A. W. Angew. Chem., Int. Ed. 2010, 49, 2004.  doi: 10.1002/anie.200906870

    88. [88]

      Vallée, F.; Mousseau, J. J.; Charette, A. J. Am. Chem. Soc. 2010, 132, 1514.  doi: 10.1021/ja910687u

    89. [89]

      Norinder, J.; Matsumoto, A.; Yoshikai, N.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 5858.  doi: 10.1021/ja800818b

    90. [90]

      Yoshikai, N.; Matsumoto, A.; Norinder, J.; Nakamura, E. Angew. Chem., Int. Ed. 2009, 48, 2925.  doi: 10.1002/anie.200900454

    91. [91]

      Yoshikai, N.; Matsumoto, A.; Norinder, J.; Nakamura, E. Synlett 2010, 313.
       

    92. [92]

      Yoshikai, N.; Asako, S.; Yamakawa, T.; Ilies, L.; Nakamura, E. Chem. Asian J. 2011, 6, 3059.  doi: 10.1002/asia.v6.11

    93. [93]

      Ilies, L.; Kobayashi, M.; Matsumoto, A.; Yoshikai, N.; Nakamura, E. Adv. Synth. Catal. 2012, 354, 593.  doi: 10.1002/adsc.201100791

    94. [94]

      Shang, R.; Ilies, L.; Matsumoto, A.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 6030.  doi: 10.1021/ja402806f

    95. [95]

      Shang, R.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2015, 137, 7660.  doi: 10.1021/jacs.5b04818

    96. [96]

      Shang, R.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2016, 138, 10132.  doi: 10.1021/jacs.6b06908

    97. [97]

      Li, Z. P.; Cao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2007, 46, 6505.  doi: 10.1002/(ISSN)1521-3773

    98. [98]

      Li, Y.-Z; . Li, B.-J.; Lu, X.-Y.; Lin, S.; Shi, Z.-J. Angew. Chem., Int. Ed. 2009, 48, 1.  doi: 10.1002/anie.200890275

    99. [99]

      Zhang, Y.; Li, C.-J. Eur. J. Org. Chem. 2007, 4654.

    100. [100]

      Li, Z. P.; Yu, R.; Li, H. J. Angew. Chem., Int. Ed. 2008, 47, 7497.  doi: 10.1002/anie.v47:39

    101. [101]

      Li, H.; He, Z.; Guo, X.; Li, W.; Zhao, X.; Li, Z. Org. Lett. 2009, 11, 4176.  doi: 10.1021/ol901751c

    102. [102]

      Liu, P.; Wang, Z. M.; Lin, J.; Hu, X. M. Eur. J. Org. Chem. 2012, 1583.
       

    103. [103]

      For Selected literatures on the synthesis of amino acid derivatives:
      (a) Beak, P.; Zajdel, W. J.; Reitz, D. B. Chem. Rev. 1984, 84, 471.
      (b) Knowles, H. S.; Hunt, K.; Parsons, A. F. Tetrahedron Lett. 2000, 41, 7121.
      (c) Burger, K.; Geith, K.; Gaa, K. Angew. Chem., Int. Ed. Engl. 1988, 27, 848.
      (d) Ireland, R. E.; Mueller, R. H. Willard, A. K. J. Am. Chem. Soc. 1976, 98, 2868;

    104. [104]

      Yoshikai, N.; Mieczkowski, A.; Matsumoto, A.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2010, 132, 5568.  doi: 10.1021/ja100651t

    105. [105]

      Qian, B.; Xie, P.; Xie, Y. J.; Huang, H. M. Org. Lett. 2011, 13, 2580.  doi: 10.1021/ol200684b

    106. [106]

      Volla, C. M. R.; Vogel, P. Org. Lett. 2009, 11, 1701.  doi: 10.1021/ol9002509

    107. [107]

      Chandrasekharam, M.; Chiranjeevi, B. P.; Gupta, K. S. V.; Sridhar, B. J. Org. Chem. 2011, 76, 10229.  doi: 10.1021/jo202152b

    108. [108]

      Guo, X.; Yu, R.; Li, H.; Li, Z. J. Am. Chem. Soc. 2009, 131, 17387.  doi: 10.1021/ja907568j

    109. [109]

      For recent reviews, see:
      (a) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417.
      (b) Giri, R.; Shi, B. F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
      (c) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704.

    110. [110]

      Zhu, S.-F.; Zhou, Q.-L. Natl. Sci. Rev. 2014, 1, 580.  doi: 10.1093/nsr/nwu019

    111. [111]

      Li, Y.; Huang, J.-S.; Zhou, Z.-Y.; Che, C.-M.; You, X.-Z. J. Am. Chem. Soc. 2002, 124, 13185.  doi: 10.1021/ja020391c

    112. [112]

      Mbuvi, H. M.; Woo, L. K. Organometallics 2008, 27, 637.  doi: 10.1021/om7007502

    113. [113]

      Cai, Y.; Zhou, S.-F.; Wang, G.-P.; Zhou, Q.-L. Adv. Synth. Catal. 2011, 353, 2939.  doi: 10.1002/adsc.v353.16

    114. [114]

      Yang, J.-M.; Cai, Y.; Zhu, S.-F.; Zhou, Q.-L. Org. Biomol. Chem. 2016, 14, 5516.  doi: 10.1039/C5OB02418H

  • 加载中
    1. [1]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    4. [4]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    5. [5]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    6. [6]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    7. [7]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    8. [8]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    9. [9]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    10. [10]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    11. [11]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    12. [12]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    13. [13]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    14. [14]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    15. [15]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    18. [18]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    19. [19]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    20. [20]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

Metrics
  • PDF Downloads(71)
  • Abstract views(3450)
  • HTML views(939)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return