Citation: Liu Wei, Zheng Xinyu, Zeng Jianguo, Cheng Pi. Visible Light Promoted C-H Functionalization Reactions of Tertiary Amines[J]. Chinese Journal of Organic Chemistry, ;2017, 37(1): 1-19. doi: 10.6023/cjoc201607040 shu

Visible Light Promoted C-H Functionalization Reactions of Tertiary Amines

  • Corresponding author: Cheng Pi, picheng55@126.com
  • Received Date: 27 July 2016
    Revised Date: 1 September 2016

    Fund Project: the National Natural Science Foundation of China 31402109

Figures(30)

  • The tertiary amine motif is an important structure component of multitudinous natural products and drug molecules.Visible light promoted C-H functionalization of tertiary amines has recently received much attention and facilitated the synthesis of alkaloids and drug molecules.Based on photoredox catalysis, visible light is able to induce the formation of iminium cations or α-amino carbon radicals through single electron transfer process which can participate in multitudinous type of organic reactions and complete C-H functionalization of tertiary amines.In this review, the research progress of photoredox catalytic C-H func-tionalization was categorized and summarized.
  • 加载中
    1. [1]

    2. [2]

      (a) Zenk, M. H. Pure Appl. Chem. 1994, 66, 2023.
      (b) Hagel, J. M.; Facchini, P. J. Plant Cell Physiol. 2013, 54, 647.

    3. [3]

      (a) Hedstrand, D. M.; Kruizinga, W. M.; Kellogg, R. M. Tetrahedron Lett. 1978, 19, 1255.
      (b) van Bergen, T. J.; Hedstrand, D. M.; Kruizinga, W. H.; Kellogg, R. M. J. Org. Chem. 1979, 44, 4953.

    4. [4]

      (a) Tang, Q.; Liu, X.; Liu, S.; Xie, H.; Liu, W.; Zeng, J.; Cheng, P. RSC Adv. 2015, 5, 89009.
      (b) Schnermann, M. J.; Overman, L. E. Angew. Chem., Int. Ed. 2012, 51, 9576.
      (c) Pratsch, G.; Lackner, G. L.; Overman, L. E. J. Org. Chem. 2015, 82, 6025.
      (d) Tucker, J. W.; Nguyen, J. D.; Narayanam, J. M. R.; Krabbe, S. W.; Stephenson, C. R. J. Chem. Commun. 2010, 46, 4985.

    5. [5]

      Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J. Org. Lett. 2012, 14, 94.  doi: 10.1021/ol202883v

    6. [6]

      Condie, A. G.; Gonzalez-Gomez, J. C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2010, 132, 1464.  doi: 10.1021/ja909145y

    7. [7]

      Rueping, M.; Zhua, S.; Koenigs, R. Chem. Commun. 2011, 47, 12709.  doi: 10.1039/c1cc15643h

    8. [8]

      Rueping, M.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C.; Leonori, D.; Vila, C. Chem.-Eur. J. 2012, 18, 5170.  doi: 10.1002/chem.v18.17

    9. [9]

      Rueping, M.; Zhu, S.; Koenigs, R. M. Chem. Commun. 2011, 47, 8679.  doi: 10.1039/c1cc12907d

    10. [10]

      Rueping, M.; Vila, C.; Bootwicha, T. ACS Catal. 2013, 3, 1676.  doi: 10.1021/cs400350j

    11. [11]

      Pan, Y.; Wang, S.; Kee, C. W.; Dubuisson, E.; Yang, Y.; Loh, K. P.; Tan, C.-H. Green Chem. 2011, 13, 3341.  doi: 10.1039/c1gc15865a

    12. [12]

      Feng, Z.-J.; Xuan, J.; Xia, X.-D.; Ding, W.; Guo, W.; Chen, J.-R.; Zou, Y.-Q.; Lu, L.-Q.; Xiao, W.-J. Org. Biomol. Chem. 2014, 12, 2037.  doi: 10.1039/c3ob42453g

    13. [13]

      Xiao, T.; Li, L.; Lin, G.; Mao, Z.-W.; Zhou, L. Org. Lett. 2014, 16, 4232.  doi: 10.1021/ol501933h

    14. [14]

      DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 8094.  doi: 10.1021/ja3030164

    15. [15]

      Bergonzini, G.; Schindler, C. S.; Wallentin C.-J.; Jacobsen, E. N.; Stephenson, C. R. J. Chem. Sci. 2014, 5, 112.  doi: 10.1039/C3SC52265B

    16. [16]

      Cai, S.; Zhao, X.; Wang, X.; Liu, Q.; Li, Z.; Wang, D. Z. Angew. Chem., Int. Ed. 2012, 51, 8050.  doi: 10.1002/anie.v51.32

    17. [17]

      Zhao, Y.; Cai, S.; Li, J.; Wang, D. Z. Tetrahedron 2013, 69, 8129.  doi: 10.1016/j.tet.2013.07.056

    18. [18]

      Li, X.; Gu, X.; Li, Y.; Li, P. ACS Catal. 2014, 4, 1897.  doi: 10.1021/cs5005129

    19. [19]

      Beatty, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2014, 136, 10270.  doi: 10.1021/ja506170g

    20. [20]

      Xuan, J.; Cheng, Y.; An, J.; Lu, L.-Q.; Zhang, X.-X.; Xiao, W.-J. Chem. Commun. 2011, 47, 8337.  doi: 10.1039/c1cc12203g

    21. [21]

      Orgren, L. R.; Maverick, E. E.; Marvin, C. J. Org. Chem. 2015, 80, 12635.  doi: 10.1021/acs.joc.5b02199

    22. [22]

      Bertrand, S.; Hoffmann, N.; Pete, J.-P. Eur. J. Org. Chem. 2000, 2227.

    23. [23]

      Miyake, Y.; Nakajima, K.; Nishibayashi, Y. J. Am. Chem. Soc. 2012, 134, 3338.  doi: 10.1021/ja211770y

    24. [24]

      Zhou, H.; Lu, P.; Gu, X.; Li, P. Org. Lett. 2013, 15, 5646.  doi: 10.1021/ol402573j

    25. [25]

      Dai, X.; Cheng, D.; Guan, B.; Mao, W.; Xu. X.; Li, X. J. Org. Chem. 2014, 79, 7212.  doi: 10.1021/jo501097b

    26. [26]

      Dai, X.; Mao, R.; Guan, B.; Xu, X.; Li, X. RSC Adv. 2015, 5, 55290.  doi: 10.1039/C5RA10491B

    27. [27]

      Noble, A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 11602.  doi: 10.1021/ja506094d

    28. [28]

      Kohls, P.; Jadhav, D.; Pandey, G.; Reiser, O. Org. Lett. 2012, 14, 672.  doi: 10.1021/ol202857t

    29. [29]

      Liu, X.; Ye, X.; Bures, F.; Liu, H.; Jiang, Z. Angew. Chem., Int. Ed. 2015, 54, 11443.  doi: 10.1002/anie.201505193

    30. [30]

      Zhu, S.; Das, A.; Bui, L.; Zhou, H.; Curran, D. P.; Rueping, M. J. Am. Chem. Soc. 2013, 135, 1823.  doi: 10.1021/ja309580a

    31. [31]

      Zhang, P.; Xiao, T.; Xiong, S.; Dong, X. Zhou, L. Org. Lett. 2014, 16, 3267.

    32. [32]

      Singh, A.; Arora, A.; Weaver, J. D. Org. Lett. 2013, 15, 5390.  doi: 10.1021/ol402751j

    33. [33]

      Prier, C. K.; MacMillan, D. W. C. Chem. Sci. 2014, 5, 4173.  doi: 10.1039/C4SC02155J

    34. [34]

      Douglas, J. J.; Cole, K. P.; Stephenson, C. R. J. J. Org. Chem. 2014, 79, 11631.  doi: 10.1021/jo502288q

    35. [35]

      Terrett, J. A.; Clift, M. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 6858.  doi: 10.1021/ja502639e

    36. [36]

      Zou, Y.-Q.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2013, 52, 11701.  doi: 10.1002/anie.v52.45

    37. [37]

      Pirnot, M. T.; Rankic, D. A.; Martin, D. B. C.; MacMillan, D. W. C. Science 2013, 339, 1593.  doi: 10.1126/science.1232993

    38. [38]

      Petronijevic, F. R.; Nappi, M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2013, 135, 18323.  doi: 10.1021/ja410478a

    39. [39]

      Jeffrey, J. L.; Petronijevic, F. R. MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 8404.  doi: 10.1021/jacs.5b05376

    40. [40]

      Fava, E.; Millet, A.; Nakajima, M.; Loescher, S.; Rueping, M. Angew. Chem., Int. Ed. 2016, 55, 6776.  doi: 10.1002/anie.201511235

    41. [41]

      Ding, W.; Lu, L.-Q.; Liu, J.; Liu, D.; Song, H.-T.; Xiao, W.-J. J. Org. Chem. 2016, 81, 7237.  doi: 10.1021/acs.joc.6b01217

    42. [42]

      Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.  doi: 10.1021/acs.chemrev.6b00018

    43. [43]

      Xuan, J.; Zeng, T.-T.; Feng, Z.-J.; Deng, Q.-H.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem. Int. Ed. 2015, 54, 1625.  doi: 10.1002/anie.201409999

    44. [44]

      Feng, Z.; Zeng, T.; Xuan, J.; Liu, Y.; Lu, L.; Xiao, W.-J. Sci. China Chem. 2016, 59, 171.  doi: 10.1007/s11426-015-5548-x

    45. [45]

      Liu, Z.; Huang, Y.; Xie, H.; Liu, W.; Zeng, J.; Cheng. P. RSC. Adv. 2016, 6, 50500.  doi: 10.1039/C6RA05927A

    46. [46]

      Uraguchi, D.; Kinoshita, N.; Kizu, T.; Ooi, T. J. Am. Chem. Soc. 2015, 137, 13768.  doi: 10.1021/jacs.5b09329

    47. [47]

      Kizu, T.; Uraguchi, D.; Ooi, T. J. Org. Chem. 2016, 81, 6953.  doi: 10.1021/acs.joc.6b00445

    48. [48]

      Wang, C.; Qin, J.; Shen, X.; Riedel, R.; Harms, K.; Meggers, E. Angew. Chem., Int. Ed. 2016, 55, 685.  doi: 10.1002/anie.201509524

    49. [49]

      Amador, A. G.; Yoon, T. P. Angew. Chem., Int. Ed. 2016, 55, 2304.  doi: 10.1002/anie.201511443

    50. [50]

      (a) Zhao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2008, 47, 7075.
      (b) Wu, J.-C.; Song, R.-J.; Wang, Z.-G.; Huang, X.-C.; Xie, Y.-X.; Li, J.-H. Angew. Chem., Int. Ed. 2012, 51, 3453.
      (c) Huo, C.; Yuan, Y.; Wu, M.; Jia, X.; Wang, X.; Chen, F.; Tang, J. Angew. Chem., Int. Ed. 2014, 53, 13544.
      (d) Peng, H.; Yu, J.-T.; Jiang, Y.; Yang, H.; Cheng, J. J. Org. Chem. 2014, 79, 9847.
      (e) Zhu, Z.-Q.; Bai, P.; Huang, Z.-Z. Org. Lett. 2014, 16, 4881.

    51. [51]

      Liu, W.; Liu, S.; Xie, H.; Qing, Z.; Zeng, J. Cheng, P. RSC Adv. 2015, 5, 17383.  doi: 10.1039/C4RA17232A

    52. [52]

      Zhu, S.; Rueping, M.; Chem. Commun. 2012, 48, 11960.  doi: 10.1039/c2cc36995h

    53. [53]

      Zou, Y.-Q.; Lu, L.-Q.; Fu, L.; Chang, N.-J.; Rong, J.; Chen, J.-R. Xiao, W.-J. Angew. Chem., Int. Ed. 2011, 50, 7171.  doi: 10.1002/anie.v50.31

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    3. [3]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    8. [8]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    9. [9]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    10. [10]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    11. [11]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    14. [14]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    15. [15]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    16. [16]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    20. [20]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(90)
  • Abstract views(3870)
  • HTML views(958)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return