Citation: Zhao Fei, Jia Xiuwen, Wang Dongping, Fei Chaoli, Wu Chenglin, Wang Jiang, Liu Hong. Research Progress in Metal-Catalyzed Addition of Carbon-Hetero Bonds to Alkynes[J]. Chinese Journal of Organic Chemistry, ;2017, 37(2): 284-300. doi: 10.6023/cjoc201607035 shu

Research Progress in Metal-Catalyzed Addition of Carbon-Hetero Bonds to Alkynes

  • Corresponding author: Liu Hong, hliu@mail.shcnc.ac.cn
  • Received Date: 21 July 2016
    Revised Date: 14 October 2016

    Fund Project: the National Natural Science Foundation of China 21372235the National Natural Science Foundation of China 21602022Re-evaluation Key Laboratory of Sichuan Province ARRLKF15-01

Figures(35)

  • The addition of carbon-hetero bonds to alkynes has become an important apporach for the functionalization of carbon-carbon triple bonds. It can construct two bonds, namely one carbon-carbon bond and one carbon-hetero bond, in a single one step. These addition reactions feature high efficiency and high atom-economy. In recent years, metal-catalyzed (Al, Fe, Ni, Cu, Ga, Ru, Rh, Pd, Hf, Ir, Pt, Au, Bi, etc.) addition of many various kinds of carbon-hetero bonds to alkynes has achieved lots of important developments. According to the types of carbon-hetero bonds, the addition of 8 different kinds of carbon-hetero bonds [C-H, C-B, C-N, C-O, C-Si, C-S, C-X (X=Cl, Br, I), C-Se] to alkynes is reviewed in this paper, and the reaction conditions, reaction selectivities (regioselectivities and stereoselectivities) and reaction mechanisms are also discussed and summarized.
  • 加载中
    1. [1]

    2. [2]

      Kobayashi, Y.; Kamisaki, H.; Yanada, K.; Yanada, R.; Takemoto, Y. Tetrahedron Lett. 2005, 46, 7549.  doi: 10.1016/j.tetlet.2005.08.133

    3. [3]

      Nakao, Y.; Idei, H.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 5070.  doi: 10.1021/ja901153s

    4. [4]

      Fujihara, T.; Katafuchi, Y.; Iwai, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2010, 132, 2094.  doi: 10.1021/ja910038p

    5. [5]

      (a) Lindhardt, A. T.; Mantel, M. L. H.; Skrydstrup, T. Angew. Chem., Int. Ed. 2008, 47, 2668.
      (b) Hills, I. D.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 13178.
      (c) Grushin, V. V. Chem. Rev. 1996, 96, 2011.

    6. [6]

      Trost, B. M.; Lumb, J. P.; Azzarelli, J. M. J. Am. Chem. Soc. 2011, 133, 740.  doi: 10.1021/ja110117g

    7. [7]

      Trost, B. M.; Taft, B. R.; Masters, J. T.; Lumb, J. P. J. Am. Chem. Soc. 2011, 133, 8502.  doi: 10.1021/ja203171x

    8. [8]

      Xu, H.-D.; Zhang, R.-W.; Li, X.; Huang, S.; Tang, W.; Hu, W.-H. Org. Lett. 2013, 15, 840.  doi: 10.1021/ol303531m

    9. [9]

      Liu, G.; Kong, W.; Che, J.-W.; Zhu, G.-G. Adv. Synth. Catal. 2014, 356, 3314.  doi: 10.1002/adsc.201400572

    10. [10]

      Babu, M. H.; Dwivedi, V.; Kant, R.; Reddy, M. S. Angew. Chem., Int. Ed. 2015, 54, 3783.  doi: 10.1002/anie.201411261

    11. [11]

      For more examples of hydroalkynylation of alkynes, see:
      (a) Katayama, H.; Yari, H.; Tanaka, M.; Ozawa, F. Chem. Commun. 2005, 4336.
      (b) Bassetti, M.; Pasquini, C.; Raneri, A.; Rosato, D. J. Org. Chem. 2007, 72, 4558.
      (c) Jahier, C.; Zatolochnaya, O. V.; N. Zvyagintsev, V. V.; Ananikov, P.; Gevorgyan, V. Org. Lett. 2012, 14, 2846.
      (d) Chen, T.; Guo, C.; Goto, M.; Han, L.-B. Chem. Commun. 2013, 49, 7498.
      (e) Xu, C.; Du, W.; Zeng, Y.; Dai, B.; Guo, H. Org. Lett. 2014, 16, 948.
      (f) Platel, R. H.; Schafer, L. L. Chem. Commun. 2012, 48, 10609.
      (g) Midya, G. C.; Parasar, B.; Dhara, K.; Dash, J. Org. Biomol. Chem. 2014, 12, 1812.
      (h) Ventre, S.; Derat, E.; Amatore, M.; Aubert, C.; Petit, M. Adv. Synth. Catal. 2013, 355, 2584.
      (i) Shen, R.-W.; Chen, K.; Deng, Q.-L.; Yang, J.-J.; Zhang, L.-X. Org. Lett. 2014, 16, 1208.

    12. [12]

      Suginome, M.; Yamamoto, A.; Murakami, M. J. Am. Chem. Soc. 2003, 125, 6358.  doi: 10.1021/ja0349195

    13. [13]

      Suginome, M.; Yamamoto, A.; Murakami, M. Angew. Chem., Int. Ed. 2005, 44, 2380.  doi: 10.1002/(ISSN)1521-3773

    14. [14]

      (a) Harwood, H. J. Jr.; Barbacci-Tobin, E. G.; Petras, S. F.; Lindsey, S.; Pellarin, L. D. Biochem. Pharmacol. 1997, 53, 839.
      (b) Morand, P.; Bagli, J. F.; Kraml, M.; Dubuc, J. J. Med. Chem. 1964, 7, 504.

    15. [15]

      Suginome, M.; Shirakura, M.; Yamamoto, A. J. Am. Chem. Soc. 2006, 128, 14438.  doi: 10.1021/ja064970j

    16. [16]

      Shimada, T.; Nakamura, I.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 10546.  doi: 10.1021/ja047542r

    17. [17]

      Nakamura, I.; Sato, Y.; Konta, S.; Terada, M. Tetrahedron Lett. 2009, 50, 2075.  doi: 10.1016/j.tetlet.2009.02.108

    18. [18]

      Wu, C.-Y.; Hu, M.; Liu, Y.; Song, R.-J.; Lei, Y.; Tang, B.-X.; Li, R.-J.; Li, J.-H. Chem. Commun. 2012, 48, 3197.  doi: 10.1039/c2cc17887g

    19. [19]

      Zhao, F.; Zhang, D.-Y.; Nian, Y.; Zhang, L.; Yang, W.; Liu, H. Org. Lett. 2014, 16, 5124.  doi: 10.1021/ol5024745

    20. [20]

      Wu, C.-L.; Zhao, F.; Shu, S.-J.; Wang, J.; Liu, H. RSC Adv. 2015, 5, 90396.  doi: 10.1039/C5RA18813J

    21. [21]

      Wu, C.-L.; Zhao, F.; Du, Y.-L.; Zhao, L.; Chen, L.; Wang, J.; Liu, H. RSC Adv. 2016, 6, 70682.  doi: 10.1039/C6RA15945A

    22. [22]

      Kamijo, S.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 1940.
       

    23. [23]

      Majumdar, K. C.; Hazra, S.; Roy, B. Tetrahedron Lett. 2011, 52, 6697.  doi: 10.1016/j.tetlet.2011.09.108

    24. [24]

      Heugebaert, T. S.; Stevens, C. V. Org. Lett. 2009, 11, 5018.  doi: 10.1021/ol902031f

    25. [25]

      Nakamura, I.; Mizushima, Y.; Yamagishi, U.; Yamamoto, Y. Tetrahedron 2007, 63, 8670.  doi: 10.1016/j.tet.2007.03.039

    26. [26]

      Zeng, X.-M.; Kinjo, R.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2010, 49, 942.  doi: 10.1002/anie.200905341

    27. [27]

      Filatova, E. A.; Pozharskii, A. F.; Gulevskaya, A. V.; Ozeryanskii, V. A. J. Org. Chem. 2015, 80, 872.  doi: 10.1021/jo502363t

    28. [28]

      For more examples of addition of C-N bond to alkynes, see: (a) Nakamura, I.; Yamagishi, U.; Song, D.; Konta, S.; Yamamoto, Y. Chem. Asian J. 2008, 3, 285.
      (b) Tobisu, M.; Ano, Y.; Chatani, N. Org. Lett. 2009, 11, 3250.
      (c) Cacchi, S.; Fabrizi, G.; Pace, Paola. J. Org. Chem. 1998, 63, 1001.
      (d) Li, G.-T.; Huang, X.-G.; Zhang, L.-M. Angew. Chem., Int. Ed. 2008, 47, 346.

    29. [29]

      Cacchi, S.; Fabrizi, G.; Moro, L. Tetrahedron Lett. 1998, 39, 5101.  doi: 10.1016/S0040-4039(98)00936-8

    30. [30]

      Nakamura, I.; Mizushima, Y.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 15022.  doi: 10.1021/ja055202f

    31. [31]

      Fürstner, A.; Davies, P. W. J. Am. Chem. Soc. 2005, 127, 15024.  doi: 10.1021/ja055659p

    32. [32]

      Liang, Z.-Q.; Ma, S.-M.; Yu, J.-H.; Xu, R.-R. J. Org. Chem. 2007, 72, 9219.  doi: 10.1021/jo7016263

    33. [33]

      Dubé, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 12062.  doi: 10.1021/ja064209+

    34. [34]

      Nakamura, I.; Chan, C. S.; Araki, T.; Terada, M.; Yamamoto, Y. Org. Lett. 2008, 10, 309.  doi: 10.1021/ol702795u

    35. [35]

      (a) Miki, K.; Nishino, F.; Ohe, K.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 5260.
      (b) Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. Chem. Eur. J. 2003, 9, 2627.
      (c) Harrak, Y.; Blaszykowski, C.; Bernard, M.; Cariou, K.; Mainetti, E.; Mourie`s, V.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2004, 126, 8656.
      (d) Kusama, H.; Miyashita, Y.; Takaya, J.; Iwasawa, N. Org. Lett. 2006, 8, 289.

    36. [36]

      Nakamura, I.; Chan, C. S.; Araki, T.; Terada, M. Yamamoto, Y. Adv. Synth. Catal. 2009, 351, 1089.  doi: 10.1002/adsc.v351:7/8

    37. [37]

      Komeyama, K.; Takahashi, K.; Takaki, K. Org. Lett. 2008, 10, 5119.  doi: 10.1021/ol8019567

    38. [38]

      Shi, Y.; Roth, K. E.; Ramgren, S. D.; Blum, S. A. J. Am. Chem. Soc. 2009, 131, 18022.  doi: 10.1021/ja9068497

    39. [39]

      Ueda, M.; Sato, A.; Ikeda, Y.; Miyoshi, T.; Naito, T.; Miyata, O. Org. Lett. 2010, 12, 2594.  doi: 10.1021/ol100803e

    40. [40]

      Watanabe, K.; Mino, T.; Ikematsu, T.; Hatta, C.; Yoshida, Y.; Sakamoto, M. Org. Chem. Front. 2016, 3, 979.  doi: 10.1039/C6QO00112B

    41. [41]

      For more examples of addition of C-O bond to alkynes, see: (a) Ackermann, M.; Bucher, J.; Rappold, M.; Graf, K.; Rominger, F.; Hashmi, A. S. Chem. Asian J. 2013, 8, 1786.
      (b) Hashmi, A. S. K.; Lothschütz, C.; Döpp, R.; Ackermann, M.; Becker, J. D. B.; Rudolph, M.; Scholz, C.; Rominger, F. Adv. Synth. Catal. 2012, 354, 133.
      (c) Monteiro, N.; Balme, G. Synlett 1998, 746.
      (d) Fürstner, A.; Heilmann, E. K.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 4760.
      (e) Tsuda, T.; Ohashi, Y.; Nagahama, N.; Sumiya, R.; Saegusa, T. J. Org. Chem. 1988, 53, 2650.
      (f) Obata, T.; Suzuki, S.; Nakagawa, A.; Kajihara, R.; Noguchi, K.; Saito, A. Org. Lett. 2016, 18, 4136.

    42. [42]

      Yeon, S. Ho.; Han, J. S.; Hong, E.; Do, Y.; Jung, I. N. J. Organomet. Chem. 1995, 499, 159.  doi: 10.1016/0022-328X(95)00323-I

    43. [43]

      Asao, N.; Yoshikawa, E.; Yamamoto, Y. J. Org. Chem. 1996, 61, 4874.  doi: 10.1021/jo960779o

    44. [44]

      Yoshikawa, E.; Gevorgyan, V.; Asao, N.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 6781.  doi: 10.1021/ja970443b

    45. [45]

      Asao, N.; Tomeba, H.; Yamamoto, Y. Tetrahedron Lett. 2005, 46, 27.  doi: 10.1016/j.tetlet.2004.11.048

    46. [46]

      Asao, N.; Shimada, T.; Yamamoto, Y. J. Am. Chem. Soc. 1999, 121, 3797.  doi: 10.1021/ja990385p

    47. [47]

      Asao, N.; Shimada, T.; Shimada, T.; Yamamoto, Y. J. Am. Chem. Soc. 2001, 123, 10899.  doi: 10.1021/ja011316p

    48. [48]

      Matsuda, T.; Kadowaki, S.; Yamaguchi, Y.; Murakami, M. Chem. Commun. 2008, 2744.
       

    49. [49]

      Matsuda, T.; Yamaguchi, Y.; Shigeno, M.; Sato, S.; Murakami, M. Chem. Commun. 2011, 47, 8697.  doi: 10.1039/c1cc12457a

    50. [50]

      Zhou, T.; Xia, Y.-Z. Organometallics 2014, 33, 4230.  doi: 10.1021/om500499s

    51. [51]

      Imamura, K.; Yoshikawa, E.; Gevorgyan, V.; Yamamoto, Y. J. Am. Chem. Soc. 1998, 120, 5339.  doi: 10.1021/ja9803409

    52. [52]

      Nakamura, I.; Bajracharya, G. B.; Wu, H.; Oishi, K.; Mizushima, Y.; Gridnev, I. D.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 15423.  doi: 10.1021/ja044603c

    53. [53]

      Nakamura, I.; Sato, T.; Terada, M.; Yamamoto, Y. Org. Lett. 2008, 10, 2649.  doi: 10.1021/ol8007556

    54. [54]

      Toyofuku, M.; Fujiwara, S.; Shinike, T.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2005, 127, 9706.  doi: 10.1021/ja052175k

    55. [55]

      Kamiya, I.; Kawakami, J.; Yano, S.; Nomoto, A.; Ogawa, A. Organometallics. 2006, 25, 3562.  doi: 10.1021/om0600442

    56. [56]

      Nakamura, I.; Sato, T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2006, 45, 4473.  doi: 10.1002/(ISSN)1521-3773

    57. [57]

      Hooper, J. F.; Chaplin, A. B.; González-Rodríguez, C.; Thompson, A. L.; Weller, A. S.; Willis, M. C. J. Am. Chem. Soc. 2012, 134, 2906.  doi: 10.1021/ja2108992

    58. [58]

      For more examples of addition of C-S bond to alkynes, see:
      (a) Lee, Y. T.; Choi, S. Y.; Chung, Y. K. Tetrahedron Lett. 2007, 48, 5673.
      (b) Davies, P. W.; Albrecht, S. J. C. Chem. Commun. 2008, 238.

    59. [59]

      Li, Y.-B.; Liu, X.-H.; Jiang, H.-F.; Feng, Z.-N. Angew. Chem., Int. Ed. 2010, 49, 3338.  doi: 10.1002/anie.201000003

    60. [60]

      Murai, M.; Hatano, Ryo.; Kitabata, S.; Ohe, K. Chem. Commun. 2011, 47, 2375.  doi: 10.1039/C0CC04385K

    61. [61]

      Hua, R.; Shimada, S.; Tanaka, M. J. Am. Chem. Soc. 1998, 120, 12365.  doi: 10.1021/ja9822299

    62. [62]

      Kashiwabara, T.; Fuse, K.; Hua, R.; Tanaka, M. Org. Lett. 2008, 10, 5469.  doi: 10.1021/ol802260w

    63. [63]

      Fielding, M. R.; Grigg, R.; Urchb, C. J. Chem. Commun. 2000, 2239.

    64. [64]

      Iwai, T.; Fujihara, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2009, 131, 6668.  doi: 10.1021/ja901778y

    65. [65]

      Le, C. M.; Menzies, P. J. C.; Petrone, D. A.; Lautens, M. Angew. Chem., Int. Ed. 2015, 54, 254.  doi: 10.1002/anie.201409248

    66. [66]

      (a) Legault, C. Y.; Garcia, Y.; Merlic, C. A.; Houk, K. N. J. Am. Chem. Soc. 2007, 129, 12664.
      (b) Xue, L.; Lin, Z. Chem. Soc. Rev. 2010, 39, 1692.
      (c) García-Melchor, M.; Braga, A. A. C.; Lledós, A.; Ujaque, G.; Maseras, F. Acc. Chem. Res. 2013, 46, 2626.

    67. [67]

      Liu, Z.-Q.; Wang, J.-G.; Zhao, Y.-K.; Zhou, B. Adv. Synth. Catal. 2009, 351, 371.  doi: 10.1002/adsc.200800708

    68. [68]

      Xu, T.; Hu, X. Angew. Chem., Int. Ed. 2015, 54, 1307.  doi: 10.1002/anie.201410279

    69. [69]

      Che, C.; Zheng, H.-L; Zhu, G.-G. Org. Lett. 2015, 17, 1617.  doi: 10.1021/acs.orglett.5b00546

    70. [70]

      Chen, X.-Y.; Kong, W.; Cai, H.-T.; Kong, L.-C.; Zhu, G.-G. Chem. Commun. 2011, 47, 2164.  doi: 10.1039/c0cc04879h

    71. [71]

      Cai, H.-T.; Yuan, Z.-L.; Zhu, W.-D.; Zhu, G.-G. Chem. Commun. 2011, 47, 8682.  doi: 10.1039/c1cc13424h

    72. [72]

      Belhomme, M.; Dru, D.; Xiong, H.; Cahard, D.; Besset, T.; Poisson, T.; Pannecoucke, X. Synthesis 2014, 46, 1859.  doi: 10.1055/s-00000084

    73. [73]

      Xu, T.; Cheung, C. W.; Hu, X. Angew. Chem., Int. Ed. 2014, 53, 4910.  doi: 10.1002/anie.201402511

    74. [74]

      For more examples of addition of C-X (X=Cl, Br, I) bonds to alkynes, see:
      (a) Ichinose, Y.; Matsunaga, S.-I.; Fugami, K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1989, 30, 3155.
      (b) Mawson, S. D.; Weavers, R. T. Tetrahedron 1995, 51, 11257.
      (c) Tang, Y.; Li, C.-Z. Org. Lett. 2004, 6, 3229.
      (d) Kippo, T.; Fukuyama, T.; Ryu, I. Org. Lett. 2010, 12, 4006.
      (e) Li, J.-X.; Yang, S.-R.; Wu, W.-Q.; Qi, C.-R.; Deng, Z.-X.; Jiang, H.-F. Tetrahedron 2014, 70, 1516.
      (f). Yeh, M.-C. P.; Lin, H.-H.; Kuo, S.-F.; Chen, P.-J.; Hong, J.-W. Adv. Synth. Catal. 2014, 356, 3816.
      (g) Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875.
      (h) Arceo, E.; Montroni, E.; Melchiorre, P. Angew. Chem., Int. Ed. 2014, 53, 120648.
      (i) Iwai, T.; Fujihara, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2012, 134, 1268.
      (j) Goossen, L. J.; Rodríguez. N.; Goossen, K. Angew. Chem., Int. Ed. 2009, 48, 9592.

    75. [75]

      Fukuyama, Y.; Nakahara, M.; Minami, H.; Kodama, M. Chem. Pharm. Bull. 1996, 44, 1418.  doi: 10.1248/cpb.44.1418

    76. [76]

      Sakai, A.; Aoyama, T.; Shioiri, T. Tetrahedron Lett. 1999, 40, 4211.  doi: 10.1016/S0040-4039(99)00714-5

    77. [77]

      Sasai, A.; Aoyama, T.; Shioiri, T. Heterocycles 2000, 52, 643.  doi: 10.3987/COM-99-S63

  • 加载中
    1. [1]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    2. [2]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    3. [3]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    10. [10]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    11. [11]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    12. [12]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    13. [13]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    14. [14]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(19)
  • Abstract views(1981)
  • HTML views(371)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return