Citation: Li Wei, Yang Chao, Gao Guolin, Xia Wujiong. Na2S2O8 Promoted Direct Thiocyanates from Thiols: a Practical Method for the Synthesis of Thiocyanates[J]. Chinese Journal of Organic Chemistry, ;2017, 37(2): 480-484. doi: 10.6023/cjoc201607019 shu

Na2S2O8 Promoted Direct Thiocyanates from Thiols: a Practical Method for the Synthesis of Thiocyanates

Figures(2)

  • A metal-free method for the preparation of thiocyanates through Na2S2O8/DBU (1, 8-diazabicyclo[5.4.0]undec-7-ene)-promoted direct thiocyanation of thiols with NaCN was developed. The reaction was run under mild conditions, and the products were obtained in 31%~78% yields.
  • 加载中
    1. [1]

      (a) Burow, M.; Bergner, A.; Gershenzon, J.; Wittstock, U. Plant Mol. Biol. 2007, 63, 49.
      (b) Dutta, S.; Abe, H.; Aoyagi, S.; Kibayashi, C.; Gates, K. S. J. Am. Chem. Soc. 2005, 127, 15004.
      (c) Garson, M. J.; Simpson, J. S. Nat. Prod. Rep. 2004, 21, 164.

    2. [2]

      (a) Sá, M. M.; Ferreira, M.; Lima, E. S.; Santos, I. D.; Orlandi, P. P.; Fernandes, L. Braz. J. Microbiol. 2014, 45, 807.
      (b) Silveira, G. P.; Ferreira, M.; Fernandes, L.; Moraski, G. C.; Cho, S.; Hwang, C.; Franzblau, S. G.; Sá, M. M. Med. Chem. Lett. 2012, 22, 6486.
      (c) Roberts, D.; Aptula, A. Chem. Res. Toxicol. 2014, 27, 240.

    3. [3]

      (a) Tsou, C.-C.; Chiu, W.-C.; Ke, C.-H.; Tsai, J.-C.; Wang, Y.-M.; Chiang, M.-H.; Liaw, W.-F. J. Am. Chem. Soc. 2014, 136, 9424.
      (b) Zhan, Z.-P.; Lang, K.; Liu, F.; Hu, L.-M. Synth. Commun. 2004, 34, 3203.
      (c) Wei, Z.-L.; Kozikowski, A. P. J. Org. Chem. 2003, 68, 9116.
      (d) Robillard, B.; Hughes, L.; Slaby, M.; Lindsay, D. A.; Ingold, K. U. J. Org. Chem. 1986, 51, 1700.

    4. [4]

      (a) Lu, X.; Wang, H.; Gao, R.; Sun, D.; Bi, X. RSC Adv. 2014, 4, 28794.
      (b) Sengupta, D.; Basu, B. Tetrahedron Lett. 2013, 54, 2277.
      (c) Vaddula, B. R.; Varma, R. S.; Leazer, J. Eur. J. Org. Chem. 2012, 2012, 6852.
      (d) Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Wu, D.; Zhou, X. Org. Lett. 2011, 13, 454.
      (e) Toste, F. D.; Laronde, F.; Still, I. W. J. Tetrahedron Lett. 1995, 36, 2949.
      (f) Prabhu, K. R.; Ramesha, A. R.; Chandrasekaran, S. J. Org. Chem. 1995, 60, 7142.

    5. [5]

      (a) Pawliczek, M.; Garve, L. K. B.; Werz, D. B. Org. Lett. 2015, 17, 1716.
      (b) Ozaki, T.; Nomoto, A.; Kamiya, I.; Kawakami, J. I.; Ogawa, A. Bull. Chem. Soc. Jpn. 2011, 84, 155.
      (c) Yokoyama, M.; Ohteki, H.; Kurauchi, M.; Hoshi, K.; Yanagisawa, E.; Suzuki, A.; Imamoto, T. J. Chem. Soc., Perkin Trans. 1 1984, 2635.

    6. [6]

      (a) Vorona, S.; Artamonova, T.; Zevatskii, Y.; Myznikov, L. Synthesis 2014, 46, 781.
      (b) Maghari, S.; Ramezanpour, S.; Darvish, F.; Balalaie, S.; Rominger, F.; Bijanzadeh, H. R. Tetrahedron 2013, 69, 2075.
      (c) Kono, M.; Matsumoto, T.; Kawamura, T.; Nishimura, A.; Kiyota, Y.; Oki, H.; Miyazaki, J.; Igaki, S.; Behnke, C. A.; Shimojo, M.; Kori, M. Biorg. Med. Chem. 2013, 21, 28.
      (d) Aoyama, T.; Murata, S.; Arai, I.; Araki, N.; Takido, T.; Suzuki, Y.; Kodomari, M. Tetrahedron 2006, 62, 3201.
      (e) Glushkov, V. A.; Ausheva, O. G.; Shklyaev, Y. V. Chem. Heterocycl. Com. 2000, 36, 607.
      (f) Shukurov, S. S.; Kukaniev, M. A.; Osimov, D. M.; Artykova, D. A. Chem. Heterocycl. Com. 1994, 30, 372.

    7. [7]

      (a) Lewis, E. S.; Cooper, J. E. J. Am. Chem. Soc. 1962, 84, 3847.
      (b) Meinhardt, N. A.; Cardon, S. Z.; Vogel, P. W. J. Org. Chem. 1960, 25, 1991.
      (c) Riemschneider, R. J. Am. Chem. Soc. 1956, 78, 844.

    8. [8]

      (a) Bouchet, L. M.; Penenory, A. B.; Robert, M.; Arguello, J. E. RSC Adv. 2015, 5, 11753.
      (b) Guo, X.-K.; Zhao, D.-Y.; Li, J.-H.; Zhang, X. -G.; Deng, C.-L.; Tang, R.-Y. Synlett 2012, 2012, 627.
      (c) Benfodda, Z.; Guillen, F.; Arnion, H.; Dahmani, A.; Blancou, H. Heteroat. Chem. 2009, 20, 355.
      (d) Zhang, Z.; Liebeskind, L. S. Org. Lett. 2006, 8, 4331.
      (e) McConachie, L. K.; Schwan, A. L. Tetrahedron Lett. 2000, 41, 5637.

    9. [9]

      (a) Yang, H.; Duan, X.-H.; Zhao, J.-F.; Guo, L.-N. Org. Lett. 2015, 17, 1998.
      (b) Sun, N.; Che, L.; Mo, W.; Hu, B.; Shen Z.; Hu, X. Org. Biomol. Chem. 2015, 13, 691.
      (c) Sun, N.; Zhang, H.; Mo, W.; Hu, B.; Shen, Z.; Hu, X. Synlett 2013, 24, 1443.
      (d) Sajjadifar, S.; Louie, O. J. Chem. 2013, Article ID 674946.6.
      (e) Vaddula, B. R.; Varma, R. S.; Leazer, J. Eur. J. Org. Chem. 2012, 2012, 6852.
      (f) Akhlaghinia, B.; Pourali, A. R.; Rahmani, M. Synth. Commun. 2012, 42, 1184.
      (g) Beletskaya, I. P.; Sigeev, A. S.; Peregudov, A. S.; Petrovskii, P. V. Mendeleev Commun. 2006, 16, 250.
      (h) Wu, G.-L.; Liu, Q.; Shen, Y. -L.; Wu, W.-T.; Wu, L.-M. Tetrahedron Lett. 2005, 46, 5831.
      (i) Iranpoor, N.; Firouzabadi, H.; Shaterian, H. R. Tetrahedron Lett. 2002, 43, 3439.
      (j) Barbero, M.; Degani, I.; Diulgheroff, N.; Dughera, S.; Fochi, R. Synthesis 2001, 2180.
      (k) Bilaya, E.; Obushak, N.; Ganushchak, N. Russ. J. Org. Chem. 1997, 33, 995.
      (l) Takagi, K.; Takachi, H.; Sasaki, K. J. Org. Chem. 1995, 60, 6552.

    10. [10]

      (a) Zhu, D.; Chang, D.; Shi, L. Chem. Commun. 2015, 51, 7180.
      (b) Wang, Z.-H.; Ji, X.-M.; Hu, M.-L.; Tang, R.-Y. Tetrahedron Lett. 2015, 56, 5067.
      (c) Venkanna, P.; Rajanna, K.; Kumar, M. S.; Venkateswarlu, M.; Ali, M. M. Synlett. 2015, 27, 237.
      (d) Frei, R.; Courant, T.; Wodrich, M. D.; Waser, J. Chem. Eur. J. 2015, 21, 2662.
      (e) Talavera, G.; Peña, J.; Alcarazo, M. J. Am. Chem. Soc. 2015, 137, 8704.
      (f) Teng, F.; Yu, J.-T.; Yang, H.; Jiang, Y.; Cheng, J. Chem. Commun. 2014, 50, 12139.
      (g) Castanheiro, T.; Gulea, M.; Donnard, M.; Suffert, J. Eur. J. Org. Chem. 2014, 2014, 7814.
      (h) Still, I. W. J.; Watson, I. D. G. Synth. Commun. 2001, 31, 1355.
      (i) Fujiki, K.; Yoshida, E. Synth. Commun. 1999, 29, 3289.
      (j) Westerberg, G.; Langstrom, B. Acta Chem. Scand. 1993, 47, 974.
      (k) Kagabu, S.; Sawahara, K.; Maehara, M.; Ichihashi, S.; Saito, K. Chem. Pharm. Bull. 1991, 39, 784.
      (l) Harusawa, S.; Shiori, T. Tetrahedron Lett. 1982, 23, 447.
      (m) Gancarz, R. A.; Kice, J. L. J. Org. Chem. 1981, 46, 4899.
      (n) Kice, J. L.; Anderson, J. M. J. Org. Chem. 1968, 33, 3331.

    11. [11]

      Rafique, J.; Saba, S.; Rosario, A. R.; Zeni G.; Braga, A. L. RSC Adv. 2014, 4, 51648.  doi: 10.1039/C4RA10490K

    12. [12]

      Yan, K.; Yang, D.; Wei, W.; Zhao, J.; Shuai, Y.; Tian, L.; Wang, J. Org. Biomol. Chem. 2015, 13, 7323.  doi: 10.1039/C5OB00769K

    13. [13]

      Wu, Y. Q.; Limburg, D. C.; Wilkinson, D. E.; Hamilton, G. S. Org. Lett. 2000, 2, 795.  doi: 10.1021/ol0055263

  • 加载中
    1. [1]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    4. [4]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    5. [5]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    6. [6]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    7. [7]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    8. [8]

      Nan Wu Hang Zhang Lingling Wei Quan Gu Haoquan Zheng Weiqiang Zhang Rui Cao . Cyanide: Poison or Treasure?. University Chemistry, 2025, 40(7): 177-188. doi: 10.12461/PKU.DXHX202409072

    9. [9]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    10. [10]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    11. [11]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    12. [12]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    13. [13]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    14. [14]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    15. [15]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    16. [16]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    17. [17]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    18. [18]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

Metrics
  • PDF Downloads(1)
  • Abstract views(1114)
  • HTML views(190)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return