Citation: Cui Na, Zhao Yu, Wang Yunxia. Recent Advances in Oxidative Cycloaddition Reactions of Phenols with Olefins[J]. Chinese Journal of Organic Chemistry, ;2017, 37(1): 20-30. doi: 10.6023/cjoc201607017 shu

Recent Advances in Oxidative Cycloaddition Reactions of Phenols with Olefins

  • Corresponding author: Wang Yunxia, wyx27210@nwu.edu.cn
  • Received Date: 10 July 2016
    Revised Date: 30 August 2016

    Fund Project: the National Natural Science Foundation of Shaanxi Province 2011JQ2001

Figures(16)

  • Phenol oxidation and the induced transformations can construct various core skeletons of bioactive molecules.Due to the extensive existence of dihydrobenzofuran core, which could be generated from the oxidative cycloaddtion reaction of phenols and olefins in bioactive neolignans and resveratrol oligomers, the oxidative cycloaddition reaction of phenols and olefins catched broad attention from organic chemists.Herein, the progress of oxidative cycloadditon reactions of phenols and olefins in recent years is reviewed according to the difference of reaction conditions, and the corresponding reaction mechanisms are discussed.
  • 加载中
    1. [1]

      (a) Fan, R.; Ding, Q.; Ye, Y. Synthesis 2012, 45, 1.
      (b) Su, B.; Deng, M.; Wang, Q. Org. Lett. 2013, 15, 1606.

    2. [2]

      (a) Libman, A.; Shalit, H.; Vainer, Y.; Narute, S.; Kozuch, S.; Pap-po, D. J. Am. Chem. Soc. 2015, 137, 11453.
      (b) More, N. Y.; Jeganmohan, M. Org. Lett. 2015, 17, 3042.
      (c) Matsushita, M.; Kamata, K.; Yamaguchi, K.; Mizuno, N. J. Am. Chem. Soc. 2005, 127, 6632.
      (d) Morimoto, K.; Sakamoto, K.; Ohnishi, Y.; Miyamoto, T.; Ito, M.; Dohi, T.; Kita, Y. Chem. Eur. J. 2013, 19, 8726.
      (e) Elsler, B.; Schollmeyer, D.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2014, 53, 5210.
      (f) Lee, Y. E.; Cao, T.; Torruellas, C.; Kozlowski, M. C. J. Am. Chem. Soc. 2014, 136, 6782.
      (g) Gaster, E.; Vainer, Y.; Regev, A.; Narute, S.; Sudheendran, K.; Werbeloff, A.; Shalit, H.; Pappo, D. Angew. Chem., Int. Ed. 2015, 54, 4198.
      (h) Morimoto, K.; Sakamoto, K.; Ohshika, T.; Dohi, T.; Kita, Y. Angew. Chem., Int. Ed. 2016, 55, 3652.

    3. [3]

      (a) Seoane, A.; Casanova, N.; Quinones, N.; Mascarenas, J. L.; Gu-lias, M. J. Am. Chem. Soc. 2014, 136, 7607.
      (b) Zuo, Z.; Yang, X.; Liu, J.; Nan, J.; Bai, L.; Wang, Y.; Luan, X. J. Org. Chem. 2015, 80, 3349.

    4. [4]

      (a) Guo, X.; Yu, R.; Li, H.; Li, Z. J. Am. Chem. Soc. 2009, 131, 17387.
      (b) Parnes, R.; Kshirsagar, U. A.; Werbeloff, A.; Regev, C.; Pappo, D. Org. Lett.2012, 14, 3324.
      (c) Pappo, D.; Regev, A.; Shalit, H. Synthesis 2015, 47, 1716.

    5. [5]

      (a) Denizot, N.; Pouilhes, A.; Cucca, M.; Beaud, R.; Guillot, R.; Kouklovsky, C.; Vincent, G. Org. Lett. 2014, 16, 5752.
      (b) Tomakinian, T.; Guillot, R.; Kouklovsky, C.; Vincent, G. Angew. Chem., Int. Ed. 2014, 53, 11881.
      (c) Vincent, G.; Beaud, R.; Tomakinian, T.; Denizot, N.; Pouilhès, A.; Kouklovsky, C. Synlett 2014, 26, 432.

    6. [6]

      Xu, W.; Nachtsheim, B. J. Org. Lett. 2015, 17, 1585.  doi: 10.1021/acs.orglett.5b00466

    7. [7]

      Lee, H.; Yi, C. S. Eur. J. Org. Chem. 2015, 9, 1899.

    8. [8]

      (a) Jacquemot, G.; Ménard, M.-A.; L'Homme, C.; Canesi, S. Chem. Sci. 2013, 4, 1287.
      (b) Long, R.; Yan, X.; Wu, Z.; Li, Z.; Xiang, H.; Zhou, X. Org. Bi-omol. Chem. 2015, 13, 3571.

    9. [9]

      (a) Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Angew. Chem., Int. Ed. 2011, 50, 586.
      (b) Chong, J.; Poutaraud, A.; Hugueney, P. Plant. Sci. 2009, 177, 143.
      (c) Coy Barrera, E. D.; Cuca, S.; Aacute; rez, L. E. Chem. Pharm. Bull. 2009, 57, 639.

    10. [10]

      Huang, Z.; Jin, L.; Feng, Y.; Peng, P.; Yi, H.; Lei, A. Angew. Chem., Int. Ed. 2013, 52, 7151.  doi: 10.1002/anie.201210023

    11. [11]

      Tomakinian, T.; Guillot, R.; Kouklovsky, C.; Vincent, G. Angew. Chem., Int. Ed. 2014, 53, 11881.  doi: 10.1002/anie.201404055

    12. [12]

      (a) Liang, K.; Yang, J.; Tong, X.; Shang, W.; Pan, Z.; Xia, C. Org. Lett. 2016, 18, 1474.
      (b) Liang, K.; Wu, T.; Xia, C. Org. Biomol. Chem. 2016, 14, 4690.

    13. [13]

      Kshirsagar, U. A.; Regev, C.; Parnes, R.; Pappo, D. Org. Lett. 2013, 15, 3174.  doi: 10.1021/ol401532a

    14. [14]

      Gaster, E.; Vainer, Y.; Regev, A.; Narute, S.; Sudheendran, K.; Werbeloff, A.; Shalit, H.; Pappo, D. Angew. Chem., Int. Ed. 2015, 54, 4198.  doi: 10.1002/anie.201409694

    15. [15]

      Meng, L.; Zhang, G.; Liu, C.; Wu, K.; Lei, A. Angew. Chem., Int. Ed. 2013, 52, 10195.  doi: 10.1002/anie.201305885

    16. [16]

      Blum, T. R.; Zhu, Y.; Nordeen, S. A.; Yoon, T. P. Angew. Chem., Int. Ed. 2014, 53, 11056.  doi: 10.1002/anie.201406393

    17. [17]

      Song, T.; Zhou, B.; Peng, G.W.; Zhang, Q.B.; Wu, L. Z.; Liu, Q.; Wang, Y. Chem.-Eur. J. 2014, 20, 678.  doi: 10.1002/chem.v20.3

    18. [18]

      Zhao, Y.; Huang, B.; Yang, C.; Li, B.; Xia, W. Synthesis 2015, 47, 2731.  doi: 10.1055/s-00000084

    19. [19]

      Wang, S.; Gates, B. D.; Swenton, J. S. J. Org. Chem. 1991, 56, 1979.  doi: 10.1021/jo00006a003

    20. [20]

      Gates, B. D.; Dalidowicz, P.; Tebben, A.; Wang, S.; Swenton, J. S. J. Org. Chem. 1992, 57, 2135.  doi: 10.1021/jo00033a040

    21. [21]

      (a) Bérard, D.; Jean, A.; Canesi, S. Tetrahedron Lett. 2007, 48, 8238.
      (b) Bérard, D.; Giroux, M. A.; Racicot, L.; Sabot, C.; Canesi, S. Tetrahedron 2008, 64, 7537.
      (c) Bérard, D.; Racicot, L.; Sabot, C.; Canesi, S. Synlett 2008, 7, 1076.
      (d) Sabot, C.; Bérard, D.; Canesi, S. Org. Lett. 2008, 10, 4629.

    22. [22]

      Guérard, K. C.; Sabot, C.; Beaulieu, M. A.; Giroux, M. A.; Canesi, S. Tetrahedron 2010, 66, 5893.  doi: 10.1016/j.tet.2010.03.096

    23. [23]

      (a) Juhaxsz, L.; Ku¨rti, L.; Antus, S. J. Nat. Prod. 2000, 63, 866.
      (b) Wang, E.; Weinb, Y.; Kuo Y. Tetrahedron Lett. 2006, 47, 9195.

    24. [24]

      Mohr, A. L.; Lombardo, V. M.; Arisco, T. M.; Morrow, G. W. Synth. Commun. 2009, 39, 3845.  doi: 10.1080/00397910902838961

    25. [25]

      Dohi, T.; Nakae, T.; Toyoda, Y.; Koseki, D.; Kubo, H.; Kamitanaka, T.; Kita, Y. Heterocycles2015, 90, 631.  doi: 10.3987/COM-14-S(K)14

    26. [26]

      Chen, P. Y.; Wu, Y. H.; Hsu, M. H.; Wang, T. P.; Wang, E. C. Tetra- hedron 2013, 69, 653.  doi: 10.1016/j.tet.2012.11.006

    27. [27]

      Alvey, L.; Prado, S.; Huteau, V.; Saint-Joanis, B.; Michel, S.; Koch, M.; Cole, S.T.; Tillequin, F.; Janin Y. L. Bioorg. Med. Chem. 2008, 16, 8264.  doi: 10.1016/j.bmc.2008.06.057

    28. [28]

      Shang, Y.; Qian, Y.; Liu, X.; Dai, F.; Shang, X.; Jia, W.; Liu, Q.; Fang, J.; Zhou, B. J. Org.Chem. 2009, 74, 5025.  doi: 10.1021/jo9007095

    29. [29]

      (a) Sako, M.; Hosokawa, H.; Ito, T.; Iinuma, M. J. Org. Chem. 2004, 69, 2598.
      (b) Takaya, Y.; Terashima, K.; Ito, J.; He, Y. H.; Tateoka, M.; Ya-maguchi, N.; Niwa, M. Tetrahedron 2005, 61, 10285.
      (c) Bruschi, M.; Orlandi, M.; Rindone, B.; Rummakko, P.; Zoia, L. J. Phys. Org. Chem. 2006, 19, 592.
      (d) Wang, G.; Wang, H.; Capretto, D. A.; Han, Q.; Hua, R.; Yang, S. Tetrahedron 2012, 68, 5216.
      (e) Althagafy, H. S.; Meza-Aviña, M. E.; Oberlies, N. H.; Croatt, M. P. J. Org. Chem. 2013, 78, 7594.
      (f) Magoulas, G. E.; Papaioannou, D. Molecules 2014, 19, 19769.

    30. [30]

      Youn, S. W.; Eom, J. I. J. Org. Chem. 2006, 71, 6705.  doi: 10.1021/jo061221b

    31. [31]

      (a) El-Seedi, H. R.; Yamamura, S.; Nishiyama, S. Tetrahedron 2002, 58, 7485.
      (b) Kirste, A.; Schnakenburg, G.; Stecker, F.; Fischer, A.; Waldvo-gel, S. R. Angew. Chem., Int. Ed. 2010, 49, 971.
      (c) El-Seedi, H. R.; Yamamura, S.; Nishiyama, S. Tetrahedron Lett. 2002, 43, 3301.
      (d) Okada, Y.; Yshoka, T.; Koike, M.; Chiba, K. Tetrahedron Lett. 2011, 52, 4690.
      (e) Chiba, K.; Fukuda, M.; Kim, S.; Kitano, Y.; Tada, M. J. Org. Chem.1999, 64, 7654.
      (f) Kim, S.; Noda, S.; Hayashi, K.; Chiba, K. Org. Lett. 2008, 10, 1827.

    32. [32]

      Bhusainahalli, V. M.; Spatafora, C.; Chalal, M.; Vervandier-Fasseur, D.; Meunier, P.; Latruffe, N.; Tringali, C. Eur. J. Org. Chem. 2012, 5217.

    33. [33]

      (a) Nascimento, I. R.; Lopes, L. M. X.; Davin, L. B.; Lewis, N. G. Tetrahedron 2000, 56, 9181.
      (b) Pereira, A. C.; Magalhaes, L. G.; Goncalves, U. O.; Luz, P. P.; Moraes, A. C. G.; Rodrigues, V.; Da Matta Guedes, P. M.; Da Silva Filho, A. A.; Cunha, W. R.; Bastos, J. K.; Nanayakkara, N. P. D.; E Silva, M. L. Phytochemistry 2011, 72, 1424.
      (c) Syrjänen, K.; Brunow, G. Tetrahedron 2001, 57, 365.
      (d) Toshiyuki, W.; Makoto, Nitta.; Kana, K.; Taketo, C.; Ye, Y.; Ku-niro, T.; Toshiyuki, K.; Haruo, N.; Masaji, I.; Minako, K.; Yoshiaki, Y.; Yoshihide, S. Bioorg. Med. Chem. Lett. 2009, 19, 5905.
      (e) Li, C.; Lu, J.; Xu, X.; Hu, R.; Pan, Y. Green Chem. 2012, 14, 328.

  • 加载中
    1. [1]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    5. [5]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    6. [6]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    7. [7]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    8. [8]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    9. [9]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    10. [10]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    11. [11]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    12. [12]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    13. [13]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    14. [14]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    15. [15]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    16. [16]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    17. [17]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    18. [18]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    19. [19]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    20. [20]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

Metrics
  • PDF Downloads(86)
  • Abstract views(5531)
  • HTML views(1347)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return