Citation: Li Meihan, Wang Yutong, Liu Guangjian, Lü Haijuan, Xing Guowen. Recent Progress on Lysosome-Targetable Fluorescent Probes[J]. Chinese Journal of Organic Chemistry, ;2017, 37(2): 356-374. doi: 10.6023/cjoc201607004 shu

Recent Progress on Lysosome-Targetable Fluorescent Probes

  • Corresponding author: Xing Guowen, gwxing@bnu.edu.cn
  • Received Date: 2 July 2016
    Revised Date: 16 September 2016

    Fund Project: the National Natural Science Foundation of China 21272027

Figures(8)

  • Lysosomes are vital in many physiological processes such as metabolism, membrane repair, cell apoptosis, etc. To have lysosomes visualized and reactive small molecules (RSMs) detected are of great significance on the understanding of some intracellular dynamic procedures as well as the therapy of related deseases. In the past few years, many lysosome-targeting RSMs-sensing fluorescent probes are reported, including protons, reduction species, oxidation species, metal cations, anions, enzymes and some physical properties such as pH, viscosity and temperature. The mechanism of targeting lysosomes can be classified into three types: (1) based on the acidic physiological environments in lysosomes, (2) based on the pathway of substance metabolism, especially the endocytosis of materials, and (3) based on the specific membrane proteins and hydrolases in lysosomes. The recently reported lysosomal fluorescent probes were assorted, summarized and reviewed in this work. The bright prospects of these probes in the application of preliminary diagnosis and therapy of some diseases were also discussed.
  • 加载中
    1. [1]

      Davies, B. A.; Lee, J. R. E.; Oestreich, A. J.; Katzmann, D. J. Chem. Rev. 2009, 109, 1575.  doi: 10.1021/cr800473s

    2. [2]

      Surendran, K.; Vitiello, S. P.; Pearce, D. A. Pediatr. Nephrol. 2014, 29, 2253.  doi: 10.1007/s00467-013-2652-z

    3. [3]

      Luo, S.; Liu, Y.; Wang, F.; Fei, Q.; Shi, B.; An, J.; Zhao, C.; Tung, C.-H. Analyst 2016, 141, 2879.  doi: 10.1039/C6AN00369A

    4. [4]

      Repnik, U.; Turk, B. Mitochondrion 2010, 10, 662.  doi: 10.1016/j.mito.2010.07.008

    5. [5]

      Ghosh, M.; Carlsson, F.; Laskar, A.; Yuan, X.; Li, W. FEBS Lett. 2011, 585, 623.  doi: 10.1016/j.febslet.2010.12.043

    6. [6]

      Yu, H. B.; Xiao, Y.; Jin, L. J. J. Am. Chem. Soc. 2012, 134, 17486.  doi: 10.1021/ja308967u

    7. [7]

      Li, Y.; Lv, Z.; Liu, M.; Xing, G. W. Chin. J. Org. Chem. 2016, 36, 962 (in Chinese).  doi: 10.6023/cjoc201510012
       

    8. [8]

      Kim, D.; Kim, G.; Nam, S.; Yin, J.; Yoon, J. Sci. Rep.-UK 2015, 5, 8488.  doi: 10.1038/srep08488

    9. [9]

      Wang, X.; Zhao, Q.; Sun, J.; Lv, J.; Tang, B. Prog. Chem. 2013, 25, 179.

    10. [10]

      Li, H.-M.; Wang, C.-L.; She, M.-Y.; Zhu, Y.-L.; Zhang, J.-D.; Yang, Z.; Liu, P.; Wang, Y.-Y.; Li, J.-L. Anal. Chim. Acta 2015, 900, 97.  doi: 10.1016/j.aca.2015.10.021

    11. [11]

      Wang, L.; Xiao, Y.; Tian, W.-M.; Deng, L.-Z. J. Am. Chem. Soc. 2013, 135, 2903.  doi: 10.1021/ja311688g

    12. [12]

      Wang, H.; Wu, Y.-Q.; Shi, Y.-L.; Tao, P.; Fan, X.; Su, X.-Y.; Kuang, G.-C. Chem.-Eur. J. 2015, 21, 3219.  doi: 10.1002/chem.v21.8

    13. [13]

      Wu, Z.-G.; Tang, M.-L.; Tian, T.; Wu, J.-G.; Deng, Y.-L.; Dong, X.-H.; Tan, Z.; Weng, X.-C.; Liu, Z.-H; Wang, C.-J.; Zhou, X. Talanta 2011, 87, 216.  doi: 10.1016/j.talanta.2011.09.065

    14. [14]

      Fan, F.; Nie, S.; Yang, D.; Luo, M.; Shi, H.; Zhang, Y. Bioconjugate Chem. 2012, 23, 1309.  doi: 10.1021/bc300143p

    15. [15]

      Boya, P.; Andreau, K.; Poncet, D.; Zamzami, N.; Perfettini, J.; Metivier, D.; Ojcius, D. M.; Jäättelä, M.; Kroemer, G. J. Exp. Med. 2003, 197, 1323.  doi: 10.1084/jem.20021952

    16. [16]

      Yu, K.-K.; Li, K.; Hou, J.-T.; Qin, H.-H; Xie, Y.-M.; Qian, C.-H.; Yu, X.-Q. RSC Adv. 2014, 4, 33975.  doi: 10.1039/C4RA05215C

    17. [17]

      Li, Z.; Song, Y.-L.; Yang, Y.-H.; Yang, L.; Huang, X.-H.; Han, J.-H.; Han, S.-F. Chem. Sci. 2012, 3, 2941.  doi: 10.1039/c2sc20733h

    18. [18]

      Zhang, X.-F.; Wang, C.; Han, Z.; Xiao, Y. ACS Appl. Mater. Interfaces 2014, 6, 21669.  doi: 10.1021/am506750m

    19. [19]

      Zhang, H.; Fan, J.-L.; Dong, H.-J.; Zhang, S.-Z; Xu, W.-Y.; Wang, J.-Y.; Gao, P.; Peng, X.-J. J. Mater. Chem. B 2013, 1, 5450.  doi: 10.1039/c3tb20646g

    20. [20]

      Han, J. H.; Park, S. K.; Lim, C. S.; Park, M. K.; Kim, H. J.; Kim, H. M.; Cho, B. R. Chem.-Eur. J. 2012, 18, 15246.  doi: 10.1002/chem.v18.48

    21. [21]

      Yang, W.-G.; Chan, P.-S.; Chan, M.-S.; Li, K.-F.; Lo, P. K.; Mak, N. K.; Cheah, K. W.; Wong, M. S. Chem. Commun. 2013, 49, 3428.  doi: 10.1039/c3cc41240g

    22. [22]

      Wang, X.-H.; Nguyen, D. M.; Yanez, C. O.; Rodriguez, L.; Ahn, H.; Bondar, M. V.; Belfield, K. D. J. Am. Chem. Soc. 2010, 132, 12237.  doi: 10.1021/ja1057423

    23. [23]

      Andrade, C. D.; Yanez, C. O.; Qaddoura, M. A.; Wang, X.; Arnett, C. L.; Coombs, S. A.; Yu, J.; Bassiouni, R.; Bondar, M. V.; Belfield, K. D. J. Fluoresc. 2011, 21, 1223.  doi: 10.1007/s10895-010-0801-3

    24. [24]

      Capodilupo, A. L.; Vergaro, V.; Baldassarre, F.; Cardone, A.; Corrente, G. A.; Carlucci, C.; Leporatti, S.; Papadia, P.; Gigli, G.; Ciccarella, G. Biochim. Biophys. Acta 2015, 1850, 385.  doi: 10.1016/j.bbagen.2014.10.010

    25. [25]

      Horobin, R. W.; Rashid-Doubell, F. Biotech. Histochem. 2013, 88, 461.  doi: 10.3109/10520295.2013.780635

    26. [26]

      Chalmers, S.; Caldwell, S. T.; Quin, C.; Prime, T. A.; James, A. M.; Cairns, A. G.; Murphy, M. P.; McCarron, J. G.; Hartley, R. C. J. Am. Chem. Soc. 2012, 134, 758.  doi: 10.1021/ja2077922

    27. [27]

      Zhang, Y.; Fang, H.-M.; Zhang, X.-T.; Wang, S.; Xing, G.-W. ChemistrySelect 2016, 1, 1.  doi: 10.1002/(ISSN)2365-6549

    28. [28]

      Lv, H.-S.; Huang, S.-Y.; Zhao, B.-X.; Miao, J.-Y. Anal. Chim. Acta 2013, 788, 177.  doi: 10.1016/j.aca.2013.06.038

    29. [29]

      Shen, S.-L.; Chen, X.-P.; Zhang, X.-F.; Miao, J.-Y.; Zhao, B.-X. J. Mater. Chem. B 2015, 3, 919.

    30. [30]

      Lv, H.-S.; Huang, S.-Y.; Xu, Y.; Dai, X.; Miao, J.-Y.; Zhao, B.-X. Bioorg. Med. Chem. Lett. 2014, 24, 535.  doi: 10.1016/j.bmcl.2013.12.025

    31. [31]

      Zhao, X.; Ge, D.; Dai, X.; Wu, W.; Miao, J.; Zhao, B. Spectro-chim. Acta, Part A 2015, 151, 218.  doi: 10.1016/j.saa.2015.06.111

    32. [32]

      Zhao, X.; Chen, X.; Shen, S.; Li, D.; Zhou, S.; Zhou, Z.; Xiao, Y.; Xi, G.; Miao, J.; Zhao, B. RSC Adv. 2014, 4, 50318.  doi: 10.1039/C4RA07555B

    33. [33]

      Lv, H.; Liu, J.; Zhao, J.; Zhao, B.; Miao, J. Sens. Actuators, B 2013, 177, 956.  doi: 10.1016/j.snb.2012.12.014

    34. [34]

      Zhang, X.-F.; Zhang, T.; Shen, S.-L.; Miao, J.-Y.; Zhao, B.-X. J. Mater. Chem. B 2015, 3, 3260.  doi: 10.1039/C4TB02082K

    35. [35]

      Zhang, X.; Zhang, T.; Shen, S.; Miao, J.; Zhao, B. RSC Adv. 2015, 5, 49115.  doi: 10.1039/C5RA06246B

    36. [36]

      Cao, X.; Chen, L.; Zhang, X.; Liu, J.; Chen, M.; Wu, Q.; Miao, J.; Zhao, B. Anal. Chim. Acta 2016, 920, 86.  doi: 10.1016/j.aca.2016.03.029

    37. [37]

      Yu, K.-K.; Li, K.; Hou, J.-T.; Yang, J.; Xie, Y.-M.; Yu, X.-Q. Polym. Chem.-UK 2014, 5, 5804.  doi: 10.1039/C4PY00646A

    38. [38]

      Chen, X.; Bi, Y.; Wang, T.-Y.; Li, P.-F.; Yan, X.; Hou, S.-S.; Bammert, C. E.; Ju, J.-F.; Gibson, K. M.; Pavan, W. J.; Bi, L.-R. Sci. Rep.-UK 2015, 5, 9004.  doi: 10.1038/srep09004

    39. [39]

      Yapici, N. B.; Bi, Y.; Li, P.-F.; Chen, X.; Yan, X.; Mandalapu, S. R.; Faucett, M.; Jockusch, S.; Ju, J.-F.; Gibson, K. M.; Pavan, W. J.; Bi, L.-R. Sci. Rep.-UK 2015, 5, 8576.  doi: 10.1038/srep08576

    40. [40]

      Sun, R.; Liu, W.; Xu, Y.-J.; Lu, J.-M.; Ge, J.-F.; Ihara, M. Chem. Commun. 2013, 49, 10709.  doi: 10.1039/c3cc46696e

    41. [41]

      Wang, X.; Li, X.; Sun, R.; Xu, Y.; Ge, J. Analyst 2016, 141, 2962.  doi: 10.1039/C6AN00258G

    42. [42]

      Wang, Q.-Q.; Zhou, L.-Y.; Qiu, L.-P.; Lu, D.-Q.; Wu, Y.-X.; Zhang, X.-B. Analyst 2015, 140, 5563.  doi: 10.1039/C5AN00683J

    43. [43]

      Li, G.-P.; Zhu, D.-J.; Xue, L.; Jiang, H. Org. Lett. 2013, 15, 5020.  doi: 10.1021/ol4023547

    44. [44]

      Wan, Q.-Q.; Chen, S.-M.; Shi, W.; Li, L.-H.; Ma, H.-M. Angew. Chem., Int. Ed. 2014, 53, 10916.  doi: 10.1002/anie.201405742

    45. [45]

      Chen, L.-Z.; Li, J.; Liu, Z.-Z.; Ma, Z.; Zhang, W.; Du, L.-P.; Xu, W.-F.; Fang, H.; Li, M.-Y. RSC Adv. 2013, 3, 13412.  doi: 10.1039/c3ra41898g

    46. [46]

      Zhang, J.-T.; Yang, M.; Li, C.; Dorh, N.; Xie, F.; Luo, F.-T.; Tiwari, A.; Liu, H.-Y. J. Mater. Chem. B 2015, 3, 2173.  doi: 10.1039/C4TB01878H

    47. [47]

      Zhu, W.-W.; Chai, X.-Y.; Wang, B.-G.; Zou, Y.; Wang, T.; Meng, Q.-G.; Wu, Q.-Y. Chem. Commun. 2015, 51, 9581.  doi: 10.1039/C5CC90249E

    48. [48]

      He, L.; Li, Y.; Tan, C.-P.; Ye, R.-R.; Chen, M.-H.; Cao, J.-J.; Ji, L.-N.; Mao, Z.-W. Chem. Sci 2015, 6, 5409.  doi: 10.1039/C5SC01955A

    49. [49]

      Dong, B.; Song, X.; Wang, C.; Kong, X.; Tang, Y.; Lin, W. Anal. Chem. 2016, 7, 4085.
       

    50. [50]

      Wang, R. Physiol. Rev. 2012, 92, 791.  doi: 10.1152/physrev.00017.2011

    51. [51]

      Liu, T.-Y.; Xu, Z.-C.; Spring, D. R.; Cui, J.-N. Org. Lett. 2013, 15, 2310.  doi: 10.1021/ol400973v

    52. [52]

      Chen, X.-Q.; Zhou, Y.; Peng, X.-J.; Yoon, J. Chem. Soc. Rev. 2010, 39, 2120.  doi: 10.1039/b925092a

    53. [53]

      Liu, Y.; Meng, F.; He, L.; Liu, K.; Lin, W. Chem. Commun. 2016, 52, 7016.  doi: 10.1039/C6CC02368A

    54. [54]

      Qiao, Q.-L.; Zhao, M.; Lang, H.-J.; Mao, D.-Q.; Cui, J.-N.; Xu, Z.-C. RSC Adv. 2014, 4, 25790.  doi: 10.1039/c4ra03725a

    55. [55]

      Zou, X. J.; Ma, Y. C.; Guo, L. E.; Liu, W. X.; Liu, M. J.; Zou, C. G.; Zhou, Y.; Zhang, J. F. Chem. Commun. 2014, 50, 13833.  doi: 10.1039/C4CC05539J

    56. [56]

      Yang, S.; Qi, Y.; Liu, C.-H.; Wang, Y.-J.; Zhao, Y.-R.; Wang, L.-L.; Li, J.-S.; Tan, W.-H.; Yang, R.-H. Anal. Chem. 2014, 86, 7508.  doi: 10.1021/ac501263d

    57. [57]

      Kand, D.; Saha, T.; Lahiri, M.; Talukdar, P. Org. Biomol. Chem. 2015, 13, 8163.  doi: 10.1039/C5OB00889A

    58. [58]

      Cao, M.-J.; Chen, H.-Y.; Chen, D.; Xu, Z.-Q.; Liu, S. H.; Chen, X.-Q.; Yin, J. Chem. Commun. 2016, 52, 721.  doi: 10.1039/C5CC08328A

    59. [59]

      Fan, J.-L.; Han, Z.-C.; Kang, Y.; Peng, X.-J. Sci. Rep.-UK 2016, 6, 19562.  doi: 10.1038/srep19562

    60. [60]

      Huang, R.; Wang, B.; Si-Tu, X.; Gao, T.; Wang, F.; He, H.; Fan, X.; Jiang, F.; Liu, Y. Chem. Commun. 2016, 52, 11579.  doi: 10.1039/C6CC06750F

    61. [61]

      Dixon, S. J.; Stockwell, B. R. Nat. Chem. Biol. 2013, 10, 9.  doi: 10.1038/nchembio.1416

    62. [62]

      Zhou, X.; Kwon, Y.; Kim, G.; Ryu, J.; Yoon, J. Biosens. Bioelectron. 2015, 64, 285.  doi: 10.1016/j.bios.2014.08.089

    63. [63]

      Abo, M.; Minakami, R.; Miyano, K.; Kamiya, M.; Nagano, T.; Urano, Y.; Sumimoto, H. Anal. Chem. 2014, 86, 5983.  doi: 10.1021/ac501041w

    64. [64]

      Bortolozzi, R.; Gradowski, S. V.; Ihmels, H.; Schäfer, K.; Viola, G. Chem. Commun. 2014, 50, 8242.  doi: 10.1039/C4CC02283A

    65. [65]

      Schäferling, M.; Grögel, D. B. M.; Schreml, S. Microchim. Acta 2011, 174, 1.  doi: 10.1007/s00604-011-0606-3

    66. [66]

      Song, D.; Lim, J. M.; Cho, S.; Park, S.; Cho, J.; Kang, D.; Rhee, S. G.; You, Y.; Nam, W. Chem. Commun. 2012, 48, 5449.  doi: 10.1039/c2cc31632c

    67. [67]

      Ren, M.-G.; Deng, B.-B.; Wang, J.-Y.; Kong, X.-Q.; Liu, Z.-R.; Zhou, K.; He, L.-W.; Lin, W.-Y. Biosens. Bioelectron. 2016, 79, 237.  doi: 10.1016/j.bios.2015.12.046

    68. [68]

      Qu, Z. J.; Ding, J. X.; Zhao, M. Y.; Li, P. J. Photochem. Photobiol. A, 2015, 299, 1.  doi: 10.1016/j.jphotochem.2014.10.015

    69. [69]

      Yuan, L.; Wang, L.; Agrawalla, B. K.; Park, S.; Zhu, H.; Sivaraman, B.; Peng, J.; Xu, Q.; Chang, Y. J. Am. Chem. Soc. 2015, 137, 5930.  doi: 10.1021/jacs.5b00042

    70. [70]

      Zhang, K. Y.; Zhang, J.; Liu, Y.; Liu, S.; Zhang, P.; Zhao, Q.; Tang, Y.; Huang, W. Chem. Sci. 2015, 6, 301.  doi: 10.1039/C4SC02600D

    71. [71]

      Ren, M.; Deng, B.; Zhou, K.; Kong, X.; Wang, J.; Xu, G.; Lin, W., J. Mater. Chem. B 2016, 4, 4739.  doi: 10.1039/C6TB01085G

    72. [72]

      Gupta, N.; Reja, S. I.; Bhalla, V.; Gupta, M.; Kaur, G.; Kumar, M. S., Chem.-Asian J. 2016, 11, 1020.  doi: 10.1002/asia.v11.7

    73. [73]

      Wang, B.-G.; Yu, S.-C.; Chai, X.-Y.; Li, T.-J.; Wu, Q.-Y.; Wang, T., Chem.-Eur. J. 2016, 22, 5649.  doi: 10.1002/chem.201505054

    74. [74]

      Jin, X.-T. M.S. Thesis, Qufu University, Shandong, 2015 Chinese).

    75. [75]

      Jing, X.-T.; Yu, F.-B.; Chen, L.-X. Chem. Commun. 2014, 50, 14253.  doi: 10.1039/C4CC07561G

    76. [76]

      Eberhardt, M.; Dux, M.; Namer, B.; Miljkovic, J.; Cordasic, N.; Will, C.; Kichko, T. I.; de la Roche, J.; Fischer, M.; Suárez, S.A.; Bikiel, D.; Dorsch, K.; Leffler, A.; Babes, A.; Lampert, A.; Lennerz, J. K.; Jacobi, J.; Martí, M. A.; Doctorovich, F.; Högestätt, E. D.; Zygmunt, P. M.; Ivanovic-Burmazovic, I.; Messlinger, K.; Reeh, P.; Filipovic, M. R. Nat. Commun. 2014, 5, 4381.  doi: 10.1038/ncomms5381

    77. [77]

      Rosenthal, J.; Lippard, S. J. J. Am. Chem. Soc. 2010, 132, 5536.  doi: 10.1021/ja909148v

    78. [78]

      Li, P.; Zhou, H.; Tang, B. J. Photochem. Photobiol., A 2012, 249, 36.  doi: 10.1016/j.jphotochem.2012.08.020

    79. [79]

      Wang, X.-B.; Ma, X.-Y.; Yang, Z.; Zhang, Z.; Wen, J.-H.; Geng, Z.-R.; Wang, Z.-L. Chem. Commun. 2013, 49, 11263.  doi: 10.1039/c3cc46585c

    80. [80]

      Ren, M.-G.; Deng, B.-B.; Wang, J.-Y.; Liu, Z.-R.; Lin, W.-Y. J. Mater. Chem. B 2015, 3, 6746.  doi: 10.1039/C5TB01184A

    81. [81]

      Wang, B.; Cui, X.; Zhang, Z.; Chai, X.; Ding, H.; Wu, Q.; Guo, Z.; Wang, T. Org. Biomol. Chem. 2016, 14, 6720.  doi: 10.1039/C6OB00894A

    82. [82]

      Xue, L.; Li, G.-P.; Zhu, D.-J.; Liu, Q.; Jiang, H. Inorg. Chem. 2012, 51, 10842.  doi: 10.1021/ic301307v

    83. [83]

      Zheng, X.-J.; Zhu, W.-C.; Liu, D.; Ai, H.; Huang, Y.; Lu, Z.-Y. ACS Appl. Mater. Interfaces 2014, 6, 7996.  doi: 10.1021/am501546h

    84. [84]

      Gao, M.; Hu, Q.-L.; Feng, G.-X.; Tang, B.Z.; Liu, B. J. Mater. Chem. B 2014, 2, 3438.  doi: 10.1039/c4tb00345d

    85. [85]

      Blum, G.; Weimer, R. M.; Edgington, L. E.; Adams, W.; Bogyo, M. PLoS One 2009, 7, 6374.
       

    86. [86]

      Evans, M. J.; Cravatt, B. F. Chem. Rev. 2006, 106, 3279.  doi: 10.1021/cr050288g

    87. [87]

      Greenbaum, D. Mol. Cell. Proteomics 2002, 1, 60.  doi: 10.1074/mcp.T100003-MCP200

    88. [88]

      Zhou, J.; Shi, W.; Li, L.-H.; Gong, Q.-Y.; Wu, X.-F.; Li, X.-H., Ma, H.-M. Chem.-Asian J. 2016. 11, 2719.  doi: 10.1002/asia.201600012

    89. [89]

      Zhang, X.-F.; Wang, B.-L.; Wang, C.; Chen, L.-C.; Xiao, Y. Anal. Chem. 2015, 87, 8292.  doi: 10.1021/acs.analchem.5b01428

    90. [90]

      Huang, B.; Geng, Z.; Ma, X.; Zhang, C.; Zhang, Z.; Wang, Z. Biosens. Bioelectron. 2016, 83, 213.  doi: 10.1016/j.bios.2016.04.064

  • 加载中
    1. [1]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    6. [6]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    7. [7]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    8. [8]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    9. [9]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    10. [10]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    11. [11]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    12. [12]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    13. [13]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    14. [14]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    15. [15]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    16. [16]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    17. [17]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    18. [18]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    19. [19]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    20. [20]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

Metrics
  • PDF Downloads(235)
  • Abstract views(9838)
  • HTML views(3711)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return