Citation: Feng JunShao, Shao Jiangyang, Gong Zhongliang, Zhong Yuwu. Amine-Amine Electronic Coupling through an Anthracene Bridge[J]. Chinese Journal of Organic Chemistry, ;2016, 36(10): 2407-2412. doi: 10.6023/cjoc201606020 shu

Amine-Amine Electronic Coupling through an Anthracene Bridge

  • Corresponding author: Zhong Yuwu, zhongyuwu@iccas.ac.cn
  • Received Date: 13 June 2016
    Revised Date: 17 July 2016

    Fund Project: National Natural Science Foundation of China 21271176Strategic Priority Research Program of the Chinese Academy of Sciences XDB12010400National Natural Science Foundation of China 21521062National Natural Science Foundation of China 21472196National Natural Science Foundation of China 21501183

Figures(6)

  • Three diamine compounds with an anthracene bridge were synthesized and characterized, including 1,5-bis(di-p-anisylamine)anthracene (1), 2,6-bis(di-p-anisylamine)anthracene (2) and 9,10-bis(di-p-anisylamine)anthracene (3). The elec-trochemistry, absorption and emission spectra, spectroelectrochemistry, and amine-amine electronic coupling of these compounds were examined. All compounds display two consecutive redox couples in the potential region between +0.6 and +1.0 V vs Ag/AgCl, with a potential splitting △E of around 100 mV. In the one-electron-oxidized state, weak intervalence charge transfer (IVCT) transitions were observed for 1·+ in the near-infrared (NIR) region and the electronic coupling parameter Vab was calculated to be 600 cm-1. In contrast, compound 3·+ displays an intense IVCT band in the NIR region with a Vab value of 1440 cm-1. However, no distinct IVCT band was discernable for 2·+, indicative of an eligible electronic coupling. This work demonstrates that the positions of the amine substituents on the anthracene bridge play a critical role in determining the degree of amine-amine electronic coupling.
  • 加载中
    1. [1]

       

    2. [2]

      Kong, D.-D.; Xue, L.-S.; Jang, R.; Liu, B.; Meng, X.-G.; Jin, S.; Ou, Y.-P.; Hao, X.; Liu, S.-H. Chem. Eur. J. 2015, 21, 9895. (b) Zhang, J.; Sun, C.-F.; Zhang, M.-X.; Hartl, F.; Yin, J.; Yu, G.-A.; Rao, L.; Liu, S. H. Dalton Trans. 2016, 45, 768.

    3. [3]

      Zhang, D.-B.; Wang, J.-Y.; Wen, H.-M.; Chen, Z.-N. Organometallics 2014, 33, 4738.

    4. [4]

      Tang, J.-H.; Shao, J.-Y.; He, Y.-Q.; Wu, S.-H.; Yao, J.; Zhong, Y.-W. Chem. Eur. J. 2016, 22, 10341.

    5. [5]

      Zhong, Y.-W.; Gong, Z.-L.; Shao, J.-Y.; Yao, J. Coord. Chem. Rev. 2016, 312, 22.

    6. [6]

      Hildebrandt, A.; Lang, H. Organometallics 2013, 32, 5640.

    7. [7]

      Gong, Z.-L.; Zhong, Y.-W. Sci. China Chem. 2015, 58, 1444.

    8. [8]

      Chen, T.; Tan, Y. N.; Zhang, Y.; Zhang, Y. Y.; Meng, M.; Lei, H.; Chen, L.; Liu, C. Y. Chem. Eur. J. 2015, 21, 2353. 

    9. [9]

      Tang, J.-H.; Yao, C.-J.; Cui, B.-B.; Zhong, Y.-W. Chem. Rec. 2016, 16, 754. (b) Shao, J.-Y.; Yao, C.-J.; Cui, B.-B.; Gong, Z.-L.; Zhong, Y.-W. Chin. Chem. Lett. 2016, 27, 1105.

    10. [10]

      Wu, X.; Wu, Y.; Zhang, C.; Nie, H.; Lei, L.; Qin, C.; Wang, C.; Bai, X.; Wang, W. RSC Adv. 2015, 5, 58843. (b) Ma, X.; Wu, Y.; Wen, H.; Niu, H.; Wang, C.; Qin, C.; Bai, X.; Lei, L.; Wang, W. RSC Adv. 2016, 6, 4564.

    11. [11]

      Fan, H.; Zhu, X. Sci. China Chem. 2015, 58, 922. 

    12. [12]

      Xiao, J.; Shi, J.; Li, D.; Meng, Q. Sci. China Chem. 2015, 58, 221. 

    13. [13]

      Tao, Y.; Yang, C.; Qin, J. Chem. Soc. Rev. 2011, 40, 2943. 

    14. [14]

      Yao, L.; Yang, B.; Ma, Y.-G. Sci. China Chem. 2014, 57, 335.

    15. [15]

      Hankache, J.; Wenger, O. S. Chem. Rev. 2011, 111, 5138. (b) Heckmann, S.; Lambert, C. Angew. Chem., Int. Ed. 2012, 51, 326. 

    16. [16]

      Shen, J.-J.; Shao, J.-Y.; Zhu, X.; Zhong, Y.-W. Org. Lett. 2016, 18, 256.

    17. [17]

      Yoshizawa, M.; Klosterman, J. K. Chem. Soc. Rev. 2014, 43, 1885. 

    18. [18]

      Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. 2012, 112, 2208.

    19. [19]

       

    20. [20]

       

    21. [21]

      Lambert, C.; Risko, C.; Coropceanu, V.; Schelter, J.; Amthor, S.; Gruhn, N. E.; Durivage, J. C.; Bredas, J.-L. J. Am. Chem. Soc. 2005, 127, 8508. 

    22. [22]

      Su, Y.; Wang, X.; Li, Y.; Song, Y.; Sui, Y.; Wang, X. Angew. Chem., Int. Ed. 2015, 54, 1634. (b) Wang, X.; Zhang, Z.; Song, Y.; Su, Y.; Wang, X. Chem. Commun. 2015, 51, 11822. 

    23. [23]

      Vila, N.; Zhong, Y.-W.; Henderson, J. C.; Abruna, H. D. Inorg. Chem. 2010, 49, 796. 

  • 加载中
    1. [1]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    2. [2]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    3. [3]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    4. [4]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    5. [5]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    6. [6]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    7. [7]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    8. [8]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    9. [9]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    10. [10]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    11. [11]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    12. [12]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    13. [13]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    15. [15]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    16. [16]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    17. [17]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    18. [18]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    19. [19]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    20. [20]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

Metrics
  • PDF Downloads(0)
  • Abstract views(1028)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return