Citation: Huang Qinglan, Tan Zhiqiang, Yu Changjiang, Zhu Xiaoming, Wu Luyong. Research for the t-BuOK-Catalyzed Synthesis of Aromatic Aldehydes and Ketone from Arylmethyl Azides[J]. Chinese Journal of Organic Chemistry, ;2017, 37(1): 97-102. doi: 10.6023/cjoc201605045 shu

Research for the t-BuOK-Catalyzed Synthesis of Aromatic Aldehydes and Ketone from Arylmethyl Azides

  • Corresponding author: Wu Luyong, wuluyong@hainnu.edu.cn
  • Received Date: 30 May 2016
    Revised Date: 14 August 2016

    Fund Project: the National Natural Sciences Foundation of China 21362008the Undergraduate Innovation and Entrepreneurship Training Program of Henan Province 20140062

Figures(1)

  • A novel synthesis of aromatic aldehyde from arylmethyl azides has been explored via base-mediated N2-extrusion and hydrolyzation. The effects of bases, hydrolysis conditions and the amount of base used on the reaction were also investigated. Benzaldehyde was isolated in the best yield of 83%, when the reaction was carried in N, N-dimethylformamide (DMF) and catalyzed by t-BuOK. Meanwhile, a variety of azides were investigated, and it was found that substituted benzyl azides could give the corresponding aromatic aldehydes in the yield of 38%~87%. The reaction of heteoaryl methyl azides was less efficient. According to the controlling experiments, the mechanism has been quitted.
  • 加载中
    1. [1]

      Grecian1, S.; Aubé, J. Organic Azides: Syntheses and Applications, Vol. 7, Eds.: Bräse, S.; Banert, K., John Wiley & Sons, Ltd, Chichester, UK, 2010, pp. 191~310.

    2. [2]

      Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005, 44, 5188.  doi: 10.1002/(ISSN)1521-3773

    3. [3]

      (a) Lee, J. H.; Gupta, S.; Jeong, W.; Rhee, Y. H.; Park, J. Angew. Chem., Int. Ed. 2012, 51, 10851.
      (b) Jeong, W.; Lee, J. H.; Kim, J.; Lee, W. J.; Seong, J.-H.; Park, J.; Rhee, Y. H. RSC Adv. 2014, 4, 20632.
      (c) Han, J.; Jeon, M.; Pak, H. K.; Rhee, Y. H.; Park, J. Adv. Synth. Catal. 2014, 356, 2769.
      (d) Gupta, S.; Han, J.; Kim, Y.; Lee, S. W.; Rhee, Y. H.; Park. J. J. Org. Chem. 2014, 79, 9094.

    4. [4]

      Chou, H.-H.; Raines, R. T. J. Am. Chem. Soc. 2013, 135, 14936.  doi: 10.1021/ja407822b

    5. [5]

      (a) Zhang, X.; Sun, X.; Zhang, H.; Cui, X.; Ma, M. Chin. J. Org. Chem. 2015, 35, 1469 (in Chinese). (张小祥, 孙小萍, 张海飞, 崔杏丽, 马猛涛, 有机化学, 2015, 35, 1469.)
      (b) Zhang, X.; Sun, X.; Cui, X.; Zhang, H. Chin. J. Org. Chem. 2015, 35, 1700 (in Chinese).(张小祥, 孙小萍, 崔杏丽, 张海飞, 有机化学, 2015, 35, 1700.)
      (c) Zhang, W.; Xu, W.; Kuang, C. Chin. J. Org. Chem. 2015, 35, 2059 (in Chinese). (张文生, 许文静, 匡春香, 有机化学, 2015, 35, 2059.)
      (d) Chiba, S. Synlett 2012, 21.

    6. [6]

      (a) Ding, M.-W.; Liu, Z.-J. Chin. J. Org. Chem. 2001, 21, 1 (in Chinese). (丁明武, 刘钊杰, 有机化学, 2001, 21, 1.) (b) Palacios, F.; Alonso, C.; Aparicio, D.; Rubiales, G.; Santos, J.M. Tetrahedron 2007, 63, 523.

    7. [7]

      (a) Song, Z.; Zhao, Y.-M.; Zhai, H. Org. Lett. 2011, 13, 6331.
      (b) Tummatorn, J.; Thongsornkleeb, C.; Ruchirawat, S. Tetrahedron 2012, 68, 4732.
      (c) Tummatorn, J.; Thongsornkleeb, C.; Ruchirawat, S.; Gettongsong, T. Org. Biomol. Chem. 2013, 11, 1463.
      (d) Tummatorn, J.; Poonsilp, P.; Nimnual, P.; Janprasit, J.; Thongsornkleeb, C.; Ruchirawat, S. J. Org. Chem. 2015, 80, 4516.
      (e) Luo, C.-Z.; Gandeepan, P.; Wu, Y.-C.; Chen, W.-C.; Cheng, C.-H. RSC Adv. 2015, 5, 106012.
      (f) Lamani, M.; Devadig, P.; Prabhu, K. R. Org. Biomol. Chem. 2012, 10, 2753.

    8. [8]

      Kulkarni, S. S.; Hu, X.; Manetsch, R. Chem. Commun. 2013, 49, 1193.  doi: 10.1039/c2cc37289d

    9. [9]

      Yan, Z.-M.; Wu, N.; Liang, D.; Wang, H.-S.; Pan, Y.-M. Org. Lett. 2014, 16, 4048.  doi: 10.1021/ol501930f

    10. [10]

      (a) Kumar, R.; Arigela, R. K.; Kundu, B. Chem.-Eur. J. 2015, 21, 11807.
      (b) He, J.; Yamaguchi, K.; Mizuno, N. J. Org. Chem. 2011, 76, 4606.
      (c) Ye, J.-Q.; Zhang, Z.-L.; Zha, Z.-G.; Wang Z.-Y. Chin. Chem. Lett. 2014, 25, 1112.
      (d) Zhao, Y.; Chew, X.; Leung, G. Y. C.; Yeung, Y.-Y. Tetrahedron Lett. 2012, 53, 4766.
      (e) Lamani, M.; Prabhu, K. R. Angew. Chem., Int. Ed. 2010, 49, 6622.
      (f) Lamani, M.; Devadig, P.; Prabhu, K. R. Org. Biomol. Chem. 2012, 10, 2753.
      (g) Martínez-Sarti, L.; Díez-González, S. ChemCatChem 2013, 5, 1722.

    11. [11]

      (a) Maddani, M.; Prabhu, K. R. Tetrahedron Lett. 2008, 49, 4526.
      (b) Zhang, H.-P.; Dai, Y.-Z.; Tao, L.-M. J. Chem. Res. 2011, 35, 720.
      (c) Alagiri, K.; Prabhu, K. R. Tetrahedron 2011, 67, 8544.
      (d) Risse, J.; Scopelliti, R.; Severin, K. Organometalics 2011, 30, 3412.

    12. [12]

      Wu, L.; Chen, Y.; Luo, J.; Sun, Q.; Peng, M.; Lin Q. Tetrahedron Lett. 2014, 55, 3847.  doi: 10.1016/j.tetlet.2014.03.029

    13. [13]

      Patonay, T.; Kónya, K.; Juhász-Tóth, É. Chem. Soc. Rev. 2011, 40, 2797.  doi: 10.1039/c0cs00101e

    14. [14]

      Chen, W.-P.; Yang, F.-Q. Chin. J. Pharm. 1993, 24, 280 (in Chinese).
       

    15. [15]

      Lozinskaya, N. A.; Tsybezova, V. V.; Proskurnina, M. V.; Zefirov, N. S. Russ. Chem. Bull. Int. Ed. 2003, 52, 674.  doi: 10.1023/A:1023915024572

    16. [16]

      Alvarez, S. G.; Alvarez, M. T. Synthesis 1997, 413.

    17. [17]

      Niu, G.-H.; Huang, P.-R.; Chuang, G. J. Asian J. Org. Chem. 2016, 5, 57.  doi: 10.1002/ajoc.201500382

    18. [18]

      Ye, X.; Fu, H.; Ma, J.; Zhong, W. Synth. Commun. 2016, 46, 885.  doi: 10.1080/00397911.2015.1137943

  • 加载中
    1. [1]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    4. [4]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    5. [5]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    6. [6]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    7. [7]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    8. [8]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    9. [9]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    10. [10]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    11. [11]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    12. [12]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    13. [13]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    14. [14]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    19. [19]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    20. [20]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

Metrics
  • PDF Downloads(18)
  • Abstract views(2941)
  • HTML views(584)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return