Citation: Wang Jun, Chu Hongtao, Chen Weiwei, Sun Rongguo. Research Progress in the Sensing Ensembles for Pyrophosphate[J]. Chinese Journal of Organic Chemistry, ;2016, 36(11): 2545-2558. doi: 10.6023/cjoc201605040 shu

Research Progress in the Sensing Ensembles for Pyrophosphate

  • Corresponding author: Wang Jun, beyoundme@126.com
  • Received Date: 26 May 2016
    Revised Date: 20 June 2016

    Fund Project: the Joint Funds of Guizhou Province Science and Technology [2015]7774the Science and Technology Department of Guizhou Province [2015]3014

Figures(34)

  • The high selective and sensitive detection of pyrophosphate anion has attracted increasing attention in recent years due to its significance in the fields of biology, environment and clinic diagnostics. The recent advances of the new sensing ensembles for PPi based on the sensing materials are highlighted, and the sensing ensembles are categorized by sensing materials involving nano materials, conjugated polyelectrolytes/polymers, lipidosome, aggregation-induced luminescent molecules and other sensing materials. In the end, the development tendency of the sensing ensembles for PPi is prospected.
  • 加载中
    1. [1]

      Heinonen, J. K. Biological Role of Inorganic Pyrophosphate, Kluwer Academic Publishers, Springer, New York, 2001.

    2. [2]

      Ronaghi, M.; Karamohamed, S.; Pettersson, B.; Uhlén, M.; Nyrén, P. Anal. Biochem. 1996, 242, 84.  doi: 10.1006/abio.1996.0432

    3. [3]

      Xu, S.; He, M.; Yu, H.; Cai, X.; Tan, X.; Lu, B.; Shu, B. Anal. Biochem. 2001, 299, 188.  doi: 10.1006/abio.2001.5418

    4. [4]

      Timms, A. E.; Zhang, Y.; Russell, R. G.; Brown, M. A. Rheumatology 2002, 41, 725.  doi: 10.1093/rheumatology/41.7.725

    5. [5]

      Doherty, M.; Belcher, C.; Regan, M.; Jones, A.; Ledingham, J. Ann. Rheum. Dis. 1996, 55, 432.  doi: 10.1136/ard.55.7.432

    6. [6]

      Timms, A. E.; Zhang, Y.; Russell, R. G. G.; Brown, M. A. Rheumatology 2002, 41, 725.  doi: 10.1093/rheumatology/41.7.725

    7. [7]

      Colvin, M. E.; Evleth, E.; Akacem, Y. J. Am. Chem. Soc. 1995, 117, 4357.  doi: 10.1021/ja00120a017

    8. [8]

      Lust, G.; Seegmiller, J. E. Clin. Chim. Acta 1976, 66, 241.  doi: 10.1016/0009-8981(76)90061-9

    9. [9]

      Cheung, C. P.; Suhadolnik, R. J. Anal. Biochem. 1977, 83, 61.  doi: 10.1016/0003-2697(77)90510-3

    10. [10]

      Vance, D. H.; Czarnik, A. W. J. Am. Chem. Soc. 1994, 116, 9397.  doi: 10.1021/ja00099a094

    11. [11]

      Nishizawa, S.; Kato, Y.; Teramae, N. J. Am. Chem. Soc. 1999, 121, 9463.  doi: 10.1021/ja991497j

    12. [12]

      Gunnlaugsson, T.; Davis, A. P.; O'Brien, J. E.; Glynn, M. Org. Lett. 2002, 4, 2449.  doi: 10.1021/ol026004l

    13. [13]

      Gunnlaugsson, T.; Davis, A. P.; O'Brien, J. E.; Glynn, M. Org. Biomol. Chem. 2005, 3, 48.  doi: 10.1039/b409018g

    14. [14]

      Sokkalingam, P.; Kim, D. S.; Hwang, H.; Sessler, J. L.; Lee, C.-H. Chem. Sci. 2012, 1819.

    15. [15]

      Quinlan, E.; Matthews, S. E.; Gunnlaugsson, T. J. Org. Chem. 2007, 72, 7497.  doi: 10.1021/jo070439a

    16. [16]

      Zhang, P.; Zhang, Y. M.; Lin, Q.; Yao, H.; Wei, T. B. Chin. J. Org. Chem. 2014, 34, 1300 (in Chinese).  doi: 10.6023/cjoc201402037
       

    17. [17]

      Zhong, K.; Guo, B.; Zhou, X.; Cai, K.; Tang, L.; Jin, L. Prog. Chem. 2015, 27, 1230 (in Chinese).
       

    18. [18]

      Anbu, S.; Ravishankaran, R.; Da silva, M. F. C. G.; Karande, A. A.; Pombeiro, A. J. L. Inorg. Chem. 2014, 53, 6655.  doi: 10.1021/ic500313m

    19. [19]

      Pérez, J.; Riera, L. Chem. Soc. Rev. 2008, 37, 2658.  doi: 10.1039/b707074h

    20. [20]

      Xu, Q.; Jin, C.; Zhu, X.; Xing, G. Chin. J. Org. Chem. 2014, 34, 647 (in Chinese).  doi: 10.6023/cjoc201311043
       

    21. [21]

      Kim, S. K.; Lee, D. H.; Hong, J.-I.; Yoon, J. Acc. Chem. Res. 2009, 42, 23.  doi: 10.1021/ar800003f

    22. [22]

      Lee, S.; Yuen, K. K. Y.; Jolliffe, K. A.; Yoon, J. Chem. Soc. Rev. 2015, 44, 1749.  doi: 10.1039/C4CS00353E

    23. [23]

      Anslyn, E. V. J. Org. Chem. 2007, 72, 687.  doi: 10.1021/jo0617971

    24. [24]

      Qiang, J.; Chang, C.; Zhu, Z.; Wei, T.; Yu, W.; Wang, F.; Yin, J.; Wang, Y.; Zhang, W.; Xie, J.; Chen, X. Sens. Actuators, B:Chem. 2016, 233, 591.  doi: 10.1016/j.snb.2016.04.082

    25. [25]

      Yu, W.; Qiang, J.; Yin, J.; Kambam, S.; Wang, F.; Wang, Y.; Chen, X. Org. Lett. 2014, 16, 2220.  doi: 10.1021/ol5007339

    26. [26]

      Zhao, C.; Liu, B.; Bi, X.; Liu, D.; Pan, C.; Wang, L.; Pang, Y. Sens. Actuators, B:Chem. 2016, 229, 131.  doi: 10.1016/j.snb.2016.01.116

    27. [27]

      Zhu, W.; Huang, X.; Guo, Z.; Wu, X.; Yu, H.; Tian, H. Chem. Commun. 2012, 48, 1784.  doi: 10.1039/c2cc16902a

    28. [28]

      Hai, Z.; Bao, Y.; Miao, Q.; Yi, X.; Liang, G. Anal. Chem. 2015, 87, 2678.  doi: 10.1021/ac504536q

    29. [29]

      Kim, I.-B.; Han, M. H.; Phillips, R. L.; Samanta, B.; Rotello, V. M.; Zhang, Z. J.; Bunz, U. H. F. Chem. Eur. J. 2009, 15, 449.  doi: 10.1002/chem.200801403

    30. [30]

      Baptista, F. R.; Belhout, S. A.; Giordani, S.; Quinn, S. J. Chem. Soc. Rev. 2015, 44, 4433.  doi: 10.1039/C4CS00379A

    31. [31]

      Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Chem. Rev. 2012, 112, 2739.  doi: 10.1021/cr2001178

    32. [32]

      Lu, Y.; Liu, J. Acc. Chem. Res. 2007, 40, 315.  doi: 10.1021/ar600053g

    33. [33]

      Deng, J.; Yu, P.; Yang, L.; Mao, L. Anal. Chem. 2013, 85, 2516.  doi: 10.1021/ac303698p

    34. [34]

      Deng, J.; Jiang, Q.; Wang, Y.; Yang, L.; Yu, P.; Mao, L. Anal. Chem. 2013, 85, 9409.  doi: 10.1021/ac402524e

    35. [35]

      Kim, S.; Eom, M. S.; Kim, S. K.; Seo, S. H.; Han, M. S. Chem. Commun. 2013, 49, 152.  doi: 10.1039/C2CC37379C

    36. [36]

      Kim, S.; Eom, M. S.; Yoo, S.; Han, M. S. Tetrahedron Lett. 2015, 56, 5030.  doi: 10.1016/j.tetlet.2015.07.020

    37. [37]

      Li, F.; Liu, Y.; Zhuang, M.; Zhang, H.; Liu, X.; Cui, H. ACS Appl. Mater. Interfaces 2014, 6, 18104.  doi: 10.1021/am504985w

    38. [38]

      Yuan, H.; Khatuam, S.; Zijlstra, P.; Yorulmaz, M.; Orrit, M. Angew. Chem., Int. Ed. Engl. 2013, 52, 1217.  doi: 10.1002/anie.201208125

    39. [39]

      Wang, L.; Song, Q.; Liu, Q.; He, D.; Ouyang, J. Adv. Funct. Mater. 2015, 25, 7017.  doi: 10.1002/adfm.201503326

    40. [40]

      Liu, J.-M.; Cui, M.-L.; Jiang, S.-L.; Wang, X.-X.; Lin, L.-P.; Jiao, L.; Zhang, L.-H.; Zheng, Z.-Y. Anal. Methods 2013, 5, 3942.  doi: 10.1039/c3ay00054k

    41. [41]

      Sun, J.; Yang, F.; Zhao, D.; Yang, X. Anal. Chem. 2014, 86, 7883.  doi: 10.1021/ac501814u

    42. [42]

      Jr, M. B.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013.  doi: 10.1126/science.281.5385.2013

    43. [43]

      Noipa, T.; Ngamdee, K.; Tuntulani, T.; Ngeontae, W. Spectro-chim. Acta, Part A 2014, 118, 17.  doi: 10.1016/j.saa.2013.08.067

    44. [44]

      Liu, J.-X.; Ding, S.-N. Anal. Methods 2016, 8, 2170.  doi: 10.1039/C5AY03116H

    45. [45]

      Liu, J.-H.; Cao, L.; LeCroy, G. E.; Wang, P.; Meziani, M. J.; Dong, Y.; Liu, Y.; Luo, P. G.; Sun, Y.-P. ACS Appl. Mater. Interfaes 2015, 7, 19439.  doi: 10.1021/acsami.5b05665

    46. [46]

      Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; Xie, S.-Y.; Sun, Y.-P. J. Am. Chem. Soc. 2007, 129, 11318.  doi: 10.1021/ja073527l

    47. [47]

      Chai, L. J.; Feng, H.; Lin, J. J.; Qian, Z. S. Sens. Actuators, B 2015, 220, 138.  doi: 10.1016/j.snb.2015.05.070

    48. [48]

      Qian, Z. S.; Chai, L. J.; Huang, Y. Y.; Tang, C.; Shen, J. J.; Chen, J. R.; Feng, H. Biosens. Bioelectron. 2015, 68, 675.  doi: 10.1016/j.bios.2015.01.068

    49. [49]

      Wang, Q.; Zhang, S.; Ge, H.; Tian, G.; Cao, N.; Li, Y. Sens. Actuators, B 2015, 207, 25.  doi: 10.1016/j.snb.2014.10.096

    50. [50]

      Lin, L.; Song, X.; Chen, Y.; Rong, M.; Zhao, T.; Jiang, Y.; Wang, Y.; Chen, X. Nanoscale 2015, 7, 15427.  doi: 10.1039/C5NR04005A

    51. [51]

      Oh, D. J.; Kim, K. M.; Ahn, K. H. Chem. Asian J. 2011, 6, 2034.  doi: 10.1002/asia.201100149

    52. [52]

      Tong, L.; Chen, Z.; Jiang, Z.; Sun, M.; Li, L.; Liu, J.; Tang, B. Biosen. Bioelectron. 2015, 72, 51.  doi: 10.1016/j.bios.2015.04.087

    53. [53]

      Ma, Y.; Zhou, Y.; Du, W.; Miao, Z.; Qi, Z. Prog. Chem. 2015, 27, 1799 (in Chinese).
       

    54. [54]

      Zhao, X.; Liu, Y.; Schanze, K. S. Chem. Commun. 2007, 2914.

    55. [55]

      Liu, Y.; Schanze, K. S. Anal. Chem. 2008, 80, 8605.  doi: 10.1021/ac801508y

    56. [56]

      Liu, Y.; Schanze, K. S. Anal. Chem. 2009, 81, 231.  doi: 10.1021/ac801908f

    57. [57]

      Zhao, X.; Schanze, K. S. Chem. Commun. 2010, 46, 6075.  doi: 10.1039/c0cc01332c

    58. [58]

      Wiskur, S. L.; Ait-Haddou, H.; Lavigne, J. L.; Anslyn, E. V. Acc. Chem. Res. 2001, 34, 963.  doi: 10.1021/ar9600796

    59. [59]

      Tang, L. J.; Li, Y.; Liu, M. H.; Li, F. F. Chemistry 2010, 600 (in Chinese).

    60. [60]

      Malik, A.H.; Hussain, S.; Tanwar, A. S.; Layek, S.; Trivedi, V.; Iyer, P. K. Analyst 2015, 140, 4388.  doi: 10.1039/C5AN00905G

    61. [61]

      Guo, Z.; Zhu, W.; Tian, H. Macromolecules 2010, 43, 739.  doi: 10.1021/ma902466g

    62. [62]

      Kim, K. M.; Oh, D. J.; Ahn, K. H. Chem. Asian J. 2011, 6, 122.  doi: 10.1002/asia.201000621

    63. [63]

      Jose, D, A.; Stadlbauer, S.; König, B. Chem. Eur. J. 2009, 15, 7404.  doi: 10.1002/chem.v15:30

    64. [64]

      Gruber, B.; Stadlbauer, S.; Späth, A.; Weiss, S.; Kalinina, M.; König, B. Angew. Chem., Int. Ed. 2010, 49, 7125.  doi: 10.1002/anie.201001101

    65. [65]

      Gruber, B.; Stadlbauer, S.; Woinaroschy, K.; König, B. Org. Biomol. Chem. 2010, 8, 3704.  doi: 10.1039/c004916f

    66. [66]

      Hong, Y.; Lam, J. W; Y.; Tang, B. Z. Chem. Soc. Rev. 2011, 40, 5361.  doi: 10.1039/c1cs15113d

    67. [67]

      Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Acc. Chem. Res. 2013, 46, 2441.  doi: 10.1021/ar3003464

    68. [68]

      Gui, S; Huang, Y.; Hu, F.; Jin, Y.; Zhang, G.; Yan, L.; Zhang, D.; Zhao, R. Anal. Chem. 2015, 87, 1470.  doi: 10.1021/ac504153c

    69. [69]

      Gao, M.; Li, S.; Lin, Y.; Geng, Y.; Ling, X.; Wang, L.; Qin, A.; Tang, B. Z. ACS Sens. 2016, 1, 179.  doi: 10.1021/acssensors.5b00182

    70. [70]

      Gogoi, A.; Mukherjee, S.; Ramesh, A.; Das, G. Anal. Chem. 2015, 87, 6974.  doi: 10.1021/acs.analchem.5b01746

    71. [71]

      Xu, H.-R.; Li, K.; Jiao, S.-Y.; Pan, S.-L.; Zeng, J.-R.; Yu, X.-Q. Analyst 2015, 140, 4182.  doi: 10.1039/C5AN00484E

    72. [72]

      Park, C.; Hong, J.-I. Tetrahedron Lett. 2010, 51, 1960.  doi: 10.1016/j.tetlet.2010.02.009

    73. [73]

      Wang, J.-H.; Xiong, J.-B.; Zhang, X.; Song, S.; Zhu, Z.-H.; Zheng, Y.-S. RSC Adv. 2015, 5, 60096.  doi: 10.1039/C5RA09721E

    74. [74]

      Yao, P.-S.; Liu, Z.; Ge, J.-Z.; Chen, Y.; Cao, Q.-Y. Dalton Trans. 2015, 44, 7470.  doi: 10.1039/C5DT00542F

    75. [75]

      Feng, X.; An, Y.; Yao, Z.; Li, C.; Shi, G. ACS Appl. Mater. Interfaces 2012, 4, 614.  doi: 10.1021/am201616r

    76. [76]

      Su, X.; Zhang, C.; Xiao, X.; Xu, A.; Xu, Z.; Zhao, M. Chem. Commun. 2013, 49, 798.  doi: 10.1039/C2CC38020J

    77. [77]

      Sánchez, G.; Curiel, D.; Tatkiewcz, W.; Ratera, I.; Tárraga, A.; Veciana, J.; Molina, P. Chem. Sci. 2014, 5, 2358.

    78. [78]

      Kumar, M.; George, S. J. Chem. Sci. 2014, 5, 3025.  doi: 10.1039/c4sc00813h

  • 加载中
    1. [1]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    4. [4]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Yan Yuan Haitao Wu Yi Zhang Li Jiang Feng Cao Yanmao Dong . Research on the Talent Training System to Enhance the Core Competence of Employment for Undergraduate Students Majoring in Materials Chemistry. University Chemistry, 2024, 39(11): 52-56. doi: 10.12461/PKU.DXHX202402015

    7. [7]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    8. [8]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    9. [9]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    10. [10]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    11. [11]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    12. [12]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    13. [13]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    14. [14]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    15. [15]

      Jinghui Zhang Wei Shen Sheng Tang Ru Jia Wei Zhong . Exploration and Reflection on Interdisciplinary Teaching of Analytical Chemistry in the New Era of International Competition. University Chemistry, 2025, 40(7): 1-9. doi: 10.12461/PKU.DXHX202408019

    16. [16]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    17. [17]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

Metrics
  • PDF Downloads(0)
  • Abstract views(3121)
  • HTML views(795)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return