Citation: Li Ming, Ning Jiabin, Yu Le, Wen Lirong. Copper-Promoted Synthesis of Thiochromones Derivatives[J]. Chinese Journal of Organic Chemistry, ;2016, 36(11): 2715-2722. doi: 10.6023/cjoc201605032 shu

Copper-Promoted Synthesis of Thiochromones Derivatives

  • Corresponding author: Wen Lirong, wenlirong@qust.edu.cn
  • Received Date: 17 May 2016
    Revised Date: 12 June 2016

    Fund Project: the National Natural Science Foundation of China 21372137the National Natural Science Foundation of China 21572110the Natural Science Foundation of Shandong Province ZR2014BM006

Figures(3)

  • A new methodology to high chemoselectively synthesize thiochromone derivatives from β-oxodithioesters and substituted o-bromoacetophenones promoted by CuI/1, 10-phen system based on the substrate-design concept has been developed. This approach has advantages of simple and efficient operation, and high yields.
  • 加载中
    1. [1]

      Nakazumi, H.; Ueyama, T.; Kitao, T. J. Heterocycl. Chem. 1985, 22, 1593.  doi: 10.1002/jhet.v22:6

    2. [2]

      Hoettecke, N.; Rotzoll, S.; Albrecht, U.; Lalk, M.; Fischer, C.; Langer, P. Bioorg. Med. Chem. 2008, 16, 10319.  doi: 10.1016/j.bmc.2008.10.043

    3. [3]

      Razdan, R. K.; Bruni, R. J.; Mehta, A. C.; Weinhardt, K. K.; Papanastassiou, Z. B. J. Med. Chem. 1978, 21, 643.  doi: 10.1021/jm00205a010

    4. [4]

      Dhanak, D.; Keenan, R. M.; Burton, G.; Kaura, A.; Darcy, M. G.; Shah, D. H.; Ridgers, L. H.; Breen, A.; Lavery, P.; Tew, D. G.; West, A. Bioorg. Med. Chem. Lett. 1998, 8, 3677.  doi: 10.1016/S0960-894X(98)00666-0

    5. [5]

      Nakib, T. A.; Bezjak, V.; Meegam, M. J.; Chandy, R. Eur. J. Med. Chem. 1990, 25, 455.
      (b) Gotoda, S.; Takahashi, N.; Nakagawa, H.; Murakami, M.; Takechi, T.; Komura, T.; Uchida, T.; Takagi, Y. Pestic. Sci. 1998, 52, 309.
      (c) Dhanak, D.; Keenen, R. M.; Burton, G.; Kaura, A.; Darcy, M. G.; Shah, D. H.; Ridgers, L. H.; Breen, A.; Lavery, P.; Tew, D. G.; West, A. Bioorg. Med. Chem. Lett. 1998, 8, 3677.
      (d) Wang, H.-K.; Bastow, K. F.; Cosentino, L. M.; Lee, K. H. J. Med. Chem. 1996, 39, 1975.
      (e) Charris, J.; Dominguez, J.; Labo, G.; Riggione, F. Pharm. Pharmacol. Commun. 1999, 5, 107.

    6. [6]

      Kitani, S.; Sugawara, K.; Tsutsumi, K.; Morimoto, T.; Kakiuchi, K. Chem. Commun. 2008, 18, 2103.
      (b) Zhang, Y.-L.; Tanimoto, H.; Nishiyama, Y.; Morimoto, T.; Kakiuchi, K. Synlett 2012, 23, 367.
      (c) Sugiura, R.; Kozaki, R.; Kitani, S.; Gosho, Y.; Tanimoto, H.; Nishiyama, Y.; Morimoto, T.; Kakiuchi, K. Tetrahedron 2013, 69, 3984.
      (d) Tasuku, I.; Takuya, K.; Seijiro, M. Org. Lett. 2014, 16, 5660.

    7. [7]

      Inami, T.; Kurahashi, T.; Matsubara, S. Org. Lett. 2014, 16, 5660.
      (b) Sangeetha, S.; Muthupandi, P.; Sekar, G. Org. Lett. 2015, 17, 6006.
      (c) Mal, K.; Kaur, A.; Haque, F.; Das, I. J. Org. Chem. 2015, 80, 6400.
      (d) Jenifer Vijay, T. A.; Nandeesh, K. N.; Raghavendra, G. M.; Rangappa, K. S.; Mantelingu, K. Tetrahedron Lett. 2013, 54, 6533.
      (e) Li, N.-G.; Shi, Z.-H.; Tang, Y.-P.; Ma, H.-Y.; Yang, J.-P.; Li, B.-Q.; Wang, Z.-J.; Song, S.-L.; Duan, J.-A. J. Heterocycl. Chem. 2010, 47, 785.
      (f) Bondock, S.; Metwally, M. A. J. Sulfur Chem. 2008, 29, 623.
      (g) Kumar, P.; Rao, A. T.; Pandey, B. J. Chem. Soc., Chem. Commun. 1992, 21, 1580.
      (h) Wang, H.-K.; Bastow, K. F.; Cosentino, L. M.; Lee, K.-H. J. Med. Chem. 1996, 39, 1975.
      (i) Kataoka, T.; Watanabe, S.; Mori, E.; Kadomoto, R.; Tanimura, S.; Kohno, M. Bioorg. Med. Chem. 2004, 12, 2397.
      (g) Zhou, C.-X.; Dubrovsky, A. V.; Larock, R. C. J. Org. Chem. 2006, 71, 1626.

    8. [8]

      Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054.
      (b) Bariwal, J.; Eycken, E. V. Chem. Soc. Rev. 2013, 42, 9283.
      (c) Sun, Y.-Y.; Yi, J.; Lu, X.; Zhang, Z.-Q.; Xiao, B.; Fu, Y. Chem. Commun. 2014, 50, 11060.
      (d) Lou, Z.-B.; Zhang, S.; Chen, C.; Pang, X.-L.; Li, M.; Wen, L.-R. Adv. Synth. Catal. 2014, 356, 153.
      (e) Yan, X.-Y.; Yang, X.-H.; Xi, C.-J. Catal. Sci. Technol. 2014, 4, 4169.
      (f) Wen, L.-R.; Jin, X.-J.; Niu, X.-D.; Li, M. J. Org. Chem. 2015, 80, 90.
      (g) Liao, Q.; Yang, X.-H.; Xi, C.-J. J. Org. Chem. 2014, 79, 8507.
      (i) Liao, S.; Xi, C.-J. Chin. J. Org. Chem. 2012, 32, 986 (in Chinese).
      (廖骞, 席婵娟, 有机化学, 2012, 32, 986.)
      (g) Liu, W.; Bi, Y.-L. Chin. J. Org. Chem. 2012, 32, 1041 (in Chinese).
      (刘伟, 毕艳兰, 有机化学, 2012, 32, 1041.)

    9. [9]

      Singh, M. S.; Nandib, G. C.; Chandaa, T. RSC Adv. 2013, 3, 14183.
      (b) Ramulu, B. J.; Nagaraju, A.; Chowdhury, S.; Koley, S.; Singh, M. S. Adv. Synth. Catal. 2015, 357, 530.
      (c) Nagaraju, A.; Ramulu, B. J.; Shukla, G.; Srivastava, A.; Verma, G. K.; Raghuvanshi, K.; Singh, M. S. Green Chem. 2015, 17, 950.
      (d) Ramulu, B. J.; Koley, S. Org. Biomol. Chem. 2016, 14, 434.
      (e) Koley, S.; Chowdhury, S.; Chanda, T.; Ramulu, B. J.; Anand, N.; Singh, M. S. Eur. J. Org. Chem. 2015, 409.

    10. [10]

      Wen, L.-R.; Yuan, W.-K.; Li, M. J. Org. Chem. 2015, 80, 4942.
      (b) Wen, L.-R.; Li, Z.-R.; Li, M.; Cao, H. Green Chem. 2012, 14, 707.

    11. [11]

      Mabe, P. J. C.; Knick, S. L.; Shuler, W. G.; Carlisle, S. S.; Smith, E. A.; Puciaty, A. J.; McFadden, T. M. C.; Potter, C.; Metz, C. R.; Beam, C. F.; Pennington, W. T.; VanDerveer, D. G.; McMillan, C. D. Ind. Eng. Chem. Res. 2015, 54, 7207.  doi: 10.1021/acs.iecr.5b00975

    12. [12]

      Singh, G.; Bhatacharjee, S. S.; Ila, H.; Junjappa, H. Synthesis 1982, 693.
      (b) Satheesh, K. N.; Asokan, C. V. Synth. Commun. 1999, 29, 791.

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    5. [5]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    6. [6]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    7. [7]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    8. [8]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    9. [9]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    10. [10]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    13. [13]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    14. [14]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    15. [15]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    16. [16]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    17. [17]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    18. [18]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    19. [19]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    20. [20]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

Metrics
  • PDF Downloads(0)
  • Abstract views(1319)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return