Citation: Chang Weiwei, Zhao Zengdian. Structure and Electrochemical Property of Fullerene Dimers[J]. Chinese Journal of Organic Chemistry, ;2016, 36(11): 2651-2661. doi: 10.6023/cjoc201605022 shu

Structure and Electrochemical Property of Fullerene Dimers

  • Corresponding author: Chang Weiwei, wwchang@sdut.edu.cn
  • Received Date: 14 May 2016
    Revised Date: 5 June 2016

    Fund Project: the Foundation for Outstanding Young and Middle-Aged Scientist of Shandong Province BS2015CL011

Figures(20)

  • Fullerene dimers have attracted extensive attention due to their unique structures and fascinating properties. Hundreds of fullerene dimers have been isolated so far, including the singly-bonded fullerene dimers, fullerene dimers connected by electroactive bridges, all-carbon fullerene dimers and unsymmetrical dimers, etc. These new molecular systems have potential applications in the area of artificial photosynthesis, photoelectronic device and supramolecular chemistry. Based on the different structure types, various fullerene dimers reported are summarized and classified in this review. Furthermore, the electrochemistry property of the dimers is discussed and the research trend of this area is also prospected.
  • 加载中
    1. [1]

      Kratschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354.  doi: 10.1038/347354a0

    2. [2]

      Sánchez, L.; Sierra, M.; Martín, N.; Guldi, D. M.; Wienk, M. W.; Janssen, R. A. J. Org. Lett. 2005, 7, 1691.  doi: 10.1021/ol050127z

    3. [3]

      Martin, C. A.; Ding, D.; Sørensen, J. K.; Bjørnholm, T.; van Ruitenbeek, J. M.; van der Zant, H. S. J. J. Am. Chem. Soc. 2008, 130, 13198.
      (b) Wang T. T.; Zeng, H, P. Chin. J. Org. Chem. 2008, 28, 1303 (in Chinese).
      (王婷婷, 曾和平, 有机化学, 2008, 28, 1303.)

    4. [4]

      Delgado, J. L.; Espíldora, E.; Liedtke, M.; Sperlich, A.; Rauh, D.; Baumann, A.; Deibel, C.; Dyakonov, V.; Martín, N. Chem.-Eur. J. 2009, 15, 13474.
      (b) Liu, J.; Guo, X.; Qin, Y.; Liang, S.; Guo, Z.-X.; Li, Y. J. Mater. Chem. 2012, 22, 1758.
      (c) Morinaka, Y.; Nobori, M.; Murata, M.; Wakamiya, A.; Sagawa, T.; Susumu, Y.; Murata, Y. Chem. Commun. 2013, 49, 3670.
      (d) Guo, Y.; Zhu, H.; Liu, G.; Yan, H.; Zhu, B.; Li, S.; Sun, Y.; Li, G. J. Org. Chem. 2016, 36, 172 (in Chinese).
      (郭颖, 朱华新, 刘桂林, 严慧敏, 朱冰洁, 李帅, 孙亚军, 李果华, 有机化学, 2016, 36, 172.)

    5. [5]

      Segura, J. L.; Martin, N. Chem. Soc. Rev. 2000, 29, 13.
      (b) Giacalone, F.; Martín, N. Chem. Rev. 2006, 106, 5136
      (c) Wei, X.; Luo, W.; Wei, X. W. Chin. J. Org. Chem. 2007, 27, 153 (in Chinese).
      (魏祥龙, 罗薇, 魏先文, 有机化学, 2007, 27, 153.)

    6. [6]

      Komatsu, K. In Organic Solid State Reactions, Ed.:Toda, F., Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 185~206.

    7. [7]

      Kellner, I. D.; von Gernler, M. S.; Tzirakis, M. D.; Orfanopoulos, M.; Drewello, T. J. Phys. Chem. C 2014, 118, 30253.  doi: 10.1021/jp509704a

    8. [8]

      Yoshida, M.; Sultana, F.; Uchiyama, N.; Yamada, T.; Iyoda, M. Tetrahedron Lett. 1999, 40, 735.  doi: 10.1016/S0040-4039(98)02442-3

    9. [9]

      Nambo, M.; Wakamiya, A.; Yamaguchi, S.; Itami, K. J. Am. Chem. Soc. 2009, 131, 15112.  doi: 10.1021/ja9071173

    10. [10]

      Nambo, M.; Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2011, 133, 2402.  doi: 10.1021/ja111213k

    11. [11]

      Itami, K. Chem. Rec. 2011, 11, 226.  doi: 10.1002/tcr.201100022

    12. [12]

      Nambo, M.; Itami, K. Chem.-Eur. J. 2009, 15, 4760.  doi: 10.1002/chem.v15:19

    13. [13]

      Lu, S.; Jin, T.; Kwon, E.; Bao, M.; Yamamoto, Y. Angew. Chem., Int. Ed. 2012, 51, 802.  doi: 10.1002/anie.201107505

    14. [14]

      Lu, S.; Jin, T.; Bao, M.; Yamamoto, Y. Org. Lett. 2012, 14, 3466.  doi: 10.1021/ol301435m

    15. [15]

      Zhang, T.-H.; Lu, P.; Wang, F.; Wang, G.-W. Org. Biomol. Chem. 2003, 1, 4403.  doi: 10.1039/b309939c

    16. [16]

      Wang, G.-W.; Wang, C.-Z.; Zhu, S.-E.; Murata, Y. Chem. Cummun. 2011, 47, 6111.  doi: 10.1039/c1cc10820d

    17. [17]

      Cheng, F.; Murata, Y.; Komatsu, K. Org. Lett. 2002, 4, 2541.  doi: 10.1021/ol026281s

    18. [18]

      Yang, W.-W.; Li, Z.-J.; Gao, X. J. Org. Chem. 2011, 76, 6067.  doi: 10.1021/jo2006768

    19. [19]

      Smith, A. B.; Tokuyama, H.; Strongin, R. M.; Furst, G. T.; Romanow, W. J.; Chait, B. T.; Mirza, U. A.; Haller, I. J. Am. Chem. Soc. 1995, 117, 9359.  doi: 10.1021/ja00141a031

    20. [20]

      Lebedkin, S.; Ballenweg, S.; Gross, J.; Taylor, R.; Krätschmer, W. Tetrahedron Lett. 1995, 36, 4971.  doi: 10.1016/00404-0399(50)0784A-

    21. [21]

      Taylor, R.; Barrow, M. P.; Drewello, T. Chem. Commun. 1998, 2497.

    22. [22]

      Balch, A. L.; Costa, D. A.; Fawcett, W. R.; Winkler, K. J. Phys. Chem. 1996, 100, 4823.  doi: 10.1021/jp953144m

    23. [23]

      Gromov, A.; Lebedkin, S.; Ballenweg, S.; G. Avent, A.; Taylor, R.; Kratschmer, W. Chem. Commun. 1997, 209.

    24. [24]

      Tsyboulski, D.; Heymann, D.; Bachilo, S. M.; Alemany, L. B.; Weisman, R. B. J. Am. Chem. Soc. 2004, 126, 7350.  doi: 10.1021/ja048937d

    25. [25]

      Giesa, S.; H. Gross, J.; Gleiter, R.; Giesa, S.; Gromov, A.; Kratschmer, W.; E. Hull, W.; Lebedkin, S. Chem. Commun. 1999, 465.

    26. [26]

      Dragoe, N.; Shimotani, H.; Hayashi, M.; Saigo, K.; de Bettencourt-Dias, A.; Balch, A. L.; Miyake, Y.; Achiba, Y.; Kitazawa, K. J. Org. Chem. 2000, 65, 3269.  doi: 10.1021/jo991676j

    27. [27]

      Murata, Y.; Kato, N.; Komatsu, K. J. Org. Chem. 2001, 66, 7235.

    28. [28]

      Fujiwara, K.; Komatsu, K. Org. Lett. 2002, 4, 1039.  doi: 10.1021/ol025630f

    29. [29]

      Murata, Y.; Han, A.; Komatsu, K. Tetrahedron Lett. 2003, 44, 8199.  doi: 10.1016/j.tetlet.2003.09.077

    30. [30]

      Wang, G.-W.; Komatsu, K.; Murata, Y.; Shiro, M. Nature 1997, 387, 583.  doi: 10.1038/42439

    31. [31]

      Komatsu, K.; Wang, G.-W.; Murata, Y.; Tanaka, T.; Fujiwara, K.; Yamamoto, K.; Saunders, M. J. Org. Chem. 1998, 63, 9358.  doi: 10.1021/jo981319t

    32. [32]

      Makarova, T. L. Semiconductors 2011, 35, 243.

    33. [33]

      Pusztai, T.; Faigel, G.; Gránásy, L.; Tegze, M.; Pekker, S. Europhys. Lett. 1995, 32, 721.  doi: 10.1209/0295-5075/32/9/004

    34. [34]

      Lee, K. H.; Park, S. S.; Suh, Y.; Yamabe, T.; Osawa, E.; Lüthi, H. P.; Gutta, P.; Lee, C. J. Am. Chem. Soc. 2001, 123, 110856.
      (b) Zhang, G. Chin. J. Org. Chem 2012, 32, 1010 (in Chinese).
      (张改红, 有机化学, 2012, 32, 1010.)

    35. [35]

      Komatsu, K.; Fujiwara, K.; Tanaka, T.; Murata, Y. Carbon 2000, 38, 1529.  doi: 10.1016/S0008-6223(00)00051-8

    36. [36]

      Dragoe, N.; Shimotani, H.; Wang, J.; Iwaya, M.; de Bettencourt-Dias, A.; Balch, A. L.; Kitazawa, K. J. Am. Chem. Soc. 2001, 123, 1294.  doi: 10.1021/ja003350u

    37. [37]

      Ren, T.; Sun, B.; Chen, Z.; Qu, L.; Yuan, H.; Gao, X.; Wang, S.; He, R.; Zhao, F.; Zhao, Y.; Liu, Z.; Jing, X. J. Phys. Chem. B 2007, 111, 6344.  doi: 10.1021/jp0701688

    38. [38]

      Zhao, Y.; Chen, Z.; Yuan, H.; Gao, X.; Qu, L.; Chai, Z.; Xing, G.; Yoshimoto, S.; Tsutsumi, E.; Itaya, K. J. Am. Chem. Soc. 2004, 126, 11134.  doi: 10.1021/ja048232b

    39. [39]

      Anderson, H. L.; Faust, R.; Rubin, Y.; Diederich, F. Angew. Chem., In. Ed 1994, 33, 1366.  doi: 10.1002/(ISSN)1521-3773

    40. [40]

      Timmerman, P.; Witschel, L. E.; Diederich, F.; Boudon, C.; Gisselbrecht, J.-P.; Gross, M. Helv. Chim. Acta 1996, 79, 6.  doi: 10.1002/(ISSN)1522-2675

    41. [41]

      Komatsu, K.; Takimoto, N.; Murata, Y.; Wan, T. S. M.; Wong, T. Tetrahedron Lett. 1996, 37, 6153.  doi: 10.1016/0040-4039(96)01335-4

    42. [42]

      Paquette, L. A.; Graham, R. J., J. Org. Chem. 1995, 60, 2958.  doi: 10.1021/jo00115a004

    43. [43]

      Wang, G.-W.; Chen, Z.-X.; Murata, Y.; Komatsu, K. Tetrahedron 2005, 61, 4851.
      (b) Zhu, Y.-L.; Zhou, S.-Y.; Cao, L.; Kan, Y.-H. Chin. J. Org. Chem. 2007, 27, 313 (in Chinese).
      (朱玉兰, 周书雨, 曹丽, 阚玉和, 有机化学, 2007, 27, 313.)

    44. [44]

      Zhang, J.; Porfyrakis, K.; Morton, J. J.; Sambrook, M. R.; Harmer, J.; Xiao, L.; Ardavan, A.; Briggs, G. A. D. J. Phys. Chem. C 2008, 112, 2802.
      (b) Zhang, S.; Gan, L.; Huang, C.; Lu, M.; Pan, J.; He, X. J. Org. Chem. 2002, 67, 883.

    45. [45]

      Briggs, J. B.; Miller, G. P. C. R. Chim. 2006, 9, 916.  doi: 10.1016/j.crci.2005.11.014

    46. [46]

      Delgado, J. L.; Osuna, S.; Bouit, P.-A.; Martínez-Alvarez, R.; Espíldora, E.; Solà, M.; Martín, N. J. Org. Chem. 2009, 74, 8174.  doi: 10.1021/jo901644b

    47. [47]

      Belik, P.; Gügel, A.; Spickermann, J.; Müllen, K. Angew. Chem., Int. Ed. Engl. 1993, 32, 78.
      (b) Gügel, A.; Belik, P.; Walter, M.; Kraus, A.; Harth, E.; Wagner, M.; Spickermann, J.; Müllen, K. Tetrahedron 1996, 52, 5007.
      (c) Murata, Y.; Kato, N.; Fujiwara, K.; Komatsu, K. J. Org. Chem. 1999, 64, 3483.
      (d) de Lucas, A. I.; Martín, N.; Sánchez, L.; Seoane, C. Tetrahedron Lett. 1996, 37, 9391.
      (e) Martín, N.; Sánchez, L.; Illescas, B.; Pérez, I. Chem. Rev. 1998, 98, 2527.
      (f) Armspach, D.; Constable, E. C.; Diederich, F.; Housecroft, C. E.; Nierengarten, J.-F. Chem.-Eur. J. 1998, 4, 723.
      (g) Konev, A. S.; Khlebnikov, A. F.; Frauendorf, H. J. Org. Chem. 2011, 76, 6218.

    48. [48]

      Xiao, Z.; Matsuo, Y.; Maruyama, M.; Nakamura, E. Org. Lett. 2013, 15, 2176.  doi: 10.1021/ol400713t

    49. [49]

      Chang, W.-W.; Li, Z.-J.; Gao, X. Org. Lett. 2013, 15, 1642.  doi: 10.1021/ol400421j

    50. [50]

      Li, Z.-J.; Li, S.-H.; Sun, T.; Gao, X. J. Org. Chem. 2014, 79, 197.  doi: 10.1021/jo402387t

    51. [51]

      Li, Z.-J.; Li, S.-H.; Sun, T.; Hou, H.-L.; Gao, X. J. Org. Chem. 2015, 80, 3566.  doi: 10.1021/acs.joc.5b00253

    52. [52]

      Konarev, D. V.; Troyanov, S. I.; Nakano, Y.; Ustimenko, K. A.; Otsuka, A.; Yamochi, H.; Saito, G.; Lyubovskaya, R. N. Organometallics 2013, 32, 4038.
      (b) Lee, K.; Song, H.; Kim, B.; Park, J. T.; Park, S.; Choi, M. -G. J. Am. Chem. Soc. 2002, 124, 2872.

    53. [53]

      Park, B. K.; Lee, G.; Kim, K. H.; Kang, H.; Lee, C. Y.; Miah, M. A.; Jung, J.; Han, Y.-K.; Park, J. T. J. Am. Chem. Soc. 2006, 128, 11160.  doi: 10.1021/ja0616027

    54. [54]

      Nakamura, E.; Mouri, S.; Nakamura, Y.; Harano, K.; Isobe, H. Org. Lett. 2008, 10, 4923.  doi: 10.1021/ol8020379

    55. [55]

      Fujiwara, K.; Komatsu, K.; Wang, G.-W.; Tanaka, T.; Hirata, K.; Yamamoto, K.; Saunders, M. J. Am. Chem. Soc. 2001, 123, 10715.  doi: 10.1021/ja011181n

  • 加载中
    1. [1]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    2. [2]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    3. [3]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    4. [4]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    5. [5]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    6. [6]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    7. [7]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    10. [10]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    11. [11]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    12. [12]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    13. [13]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    14. [14]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    15. [15]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

    16. [16]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    17. [17]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

Metrics
  • PDF Downloads(0)
  • Abstract views(2662)
  • HTML views(469)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return