Progress of Organic Photovoltaic Cells Based on Squaraine Small Molecule Donors and Fullerene Acceptors
- Corresponding author: Chen Guo, chenguo@shu.edu.cn
Citation:
Si Changfeng, Chen Guo, Wei Bin. Progress of Organic Photovoltaic Cells Based on Squaraine Small Molecule Donors and Fullerene Acceptors[J]. Chinese Journal of Organic Chemistry,
;2016, 36(11): 2602-2618.
doi:
10.6023/cjoc201605020
Chapin, D. M.; Fuller, C. S.; Pearson, G. L. J. Appl. Phys.1954, 25, 676.
doi: 10.1063/1.1721711
Chen, G.; Sasabe, H.; Sano, T.; Wang, X. F.; Hong, Z.; Kido, J.; Yang, Y. Nanotechnology 2013, 24, 484007.
doi: 10.1088/0957-4484/24/48/484007
Li, Z.; Peng, Q.; He, P.; Wang, Y.; Hou, Q.; Li, B.; Tian, W. Chin. J. Org. Chem. 2012, 32, 834 (in Chinese).
doi: 10.6023/cjoc1109271
Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.
doi: 10.1063/1.96937
Li, Y. F. Acc. Chem. Res. 2012, 45, 723.
doi: 10.1021/ar2002446
Chen, G.; Wang, T.; Li, C.; Yang, L.; Xu, T.; Zhu, W.; Gao, Y.; Wei, B. Org. Electron. 2016, 36, 50.
doi: 10.1016/j.orgel.2016.05.033
You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C. C.; Gao, J.; Li, G.; Yang, Y. Nat. Commun. 2013, 4, 1446.
doi: 10.1038/ncomms2411
He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T. P.; Cao, Y. Nat. Photonics 2015, 9, 174.
doi: 10.1038/nphoton.2015.6
Yu, W.; Huang, L.; Yang, D.; Fu, P.; Zhou, L.; Zhang, J.; Li, C. J. Mater. Chem. A 2015, 3, 10660.
doi: 10.1039/C5TA00930H
Chen, J. D.; Cui, C.; Li, Y. Q.; Zhou, L.; Ou, Q. D.; Li, C.; Li, Y.; Tang, J. X. Adv. Mater. 2015, 27, 1035.
doi: 10.1002/adma.201404535
Zhang, S.; Ye, L.; Zhao, W.; Yang, B.; Wang, Q.; Hou, J. Sci. China:Chem. 2015, 58, 248.
doi: 10.1007/s11426-014-5273-x
Ouyang, X.; Peng, R.; Ai, L.; Zhang, X.; Ge, Z. Nat. Photonics 2015, 9, 520.
doi: 10.1038/nphoton.2015.126
Huang, J.; Li, C. Z.; Chueh, C. C.; Liu, S. Q.; Yu, J. S.; Jen, A. K. Y. Adv. Energy Mater. 2015, 5, DOI:10.1002/aenm.201500406.
doi: 10.1002/aenm.201500406
Lin, Y.; Li, Y.; Zhan, X. Chem. Soc. Rev. 2012, 41, 4245.
doi: 10.1039/c2cs15313k
Kan, B.; Li, M.; Zhang, Q.; Liu, F.; Wan, X.; Wang, Y.; Ni, W.; Long, G.; Yang, X.; Feng, H.; Zuo, Y.; Zhang, M.; Huang, F.; Cao, Y.; Russell, T. P.; Chen, Y. J. Am. Chem. Soc. 2015, 137, 3886.
doi: 10.1021/jacs.5b00305
Chen, G.; Sasabe, H.; Igarashi, T.; Hong, Z.; Kido, J. J. Mater. Chem. A 2015, 3, 14517.
doi: 10.1039/C5TA01879J
Ajayaghosh, A. Acc. Chem. Res. 2005, 38, 449.
doi: 10.1021/ar0401000
Merritt, V. Y.; Hovel, H. J. Appl. Phys. Lett. 1976, 29, 414.
doi: 10.1063/1.89101
Silvestri, F.; Irwin, M. D.; Beverina, L.; Facchetti, A.; Pagani, G. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 17640.
doi: 10.1021/ja8067879
Wang, S.; Mayo, E.; Perez, M.; Griffe, L.; Wei, G.; Djurovich, P.; Forrest, S.; Thompson, M. Appl. Phys. Lett. 2009, 94, 233304.
doi: 10.1063/1.3152011
Wei, G.; Lunt, R. R.; Sun, K.; Wang, S.; Thompson, M. E.; Forrest, S. R. Nano Lett. 2010, 10, 3555.
doi: 10.1021/nl1018194
Wei, G.; Wang, S.; Sun, K.; Thompson, M. E.; Forrest, S. R. Adv. Energy Mater. 2011, 1, 184.
doi: 10.1002/aenm.201100045
Zimmerman, J. D.; Lassiter, B. E.; Xiao, X.; Sun, K.; Dolocan, A.; Gearba, R.; Vanden Bout, D. A.; Stevenson, K. J.; Wick-ramasinghe, P.; Thompson, M. E.; Forrest, S. R. ACS Nano 2013, 7, 9268.
doi: 10.1021/nn403897d
Silvestri, F.; pez-Duarte, I. L.; Seitz, W.; Beverina, L.; Mar-tínez-Díaz, M. V.; Marks, T. J.; Guldi, D. M.; Pagani, G. A.; Torres, T. Chem. Commun. 2009, 4500.
Smits, E. C. P.; Setayesh, S.; Anthopoulos, T. D.; Buechel, M.; Nijssen, W.; Coehoorn, R.; Blom, P. W. M.; de Boer, B.; de Leeuw, D. M. Adv. Mater. 2007, 19, 734.
doi: 10.1002/(ISSN)1521-4095
Bagnis, D.; Beverina, L.; Huang, H.; Silvestri, F.; Yao, Y.; Yan, H.; Pagani, G. A.; Marks, T. J.; Facchetti, A. J. Am. Chem. Soc. 2010, 132, 4074.
doi: 10.1021/ja100520q
Beverina, L.; Drees, M.; Facchetti, A.; Salamone, M.; Ruffo, R.; Pagani, G. A. Eur. J. Org. Chem. 2011, 5555.
Mayerhöffer, U.; Deing, K. C.; Grub, K.; Braunschweig, H.; Meerholz, K.; Würthner, F. Angew. Chem., Int. Ed. 2009, 48, 8776.
doi: 10.1002/anie.v48:46
Deing, K. C.; Mayerhöffer, U.; Würthner, F.; Meerholz, K. Phys. Chem. Chem. Phys. 2012, 14, 8328.
doi: 10.1039/c2cp40789b
Wei, G.; Wang, S.; Renshaw, K.; Thompson, M. E.; Forrest, S. R. ACS Nano 2010, 4, 1927.
doi: 10.1021/nn100195j
Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery K.; Yang Y. Nat. Mater. 2005, 4, 864.
doi: 10.1038/nmat1500
Wang, S.; Hall, L.; Diev, V. V.; Haiges, R.; Wei, G.; Xiao, X.; Djurovich, P. I.; Forrest, S. R.; Thompson, M. E. Chem. Mater. 2011, 23, 4789.
doi: 10.1021/cm2020803
Chen, G.; Sasabe, H.; Sasaki, Y.; Katagiri, H.; Wang, X. F.; Sano, T.; Hong, Z.; Yang, Y.; Kido, J. Chem. Mater. 2014, 26, 1356.
doi: 10.1021/cm4034929
Wei, G.; Xiao, X.; Wang, S.; Zimmerman, J. D.; Sun, K.; Diev, V. V.; Thompson, M. E.; Forrest, S. R. Nano Lett. 2011, 11, 4261.
doi: 10.1021/nl2022515
Wei, G.; Xiao, X.; Wang, S.; Sun, K.; Bergemann, K. J.; Thompson, M. E.; Forrest, S. R. ACS Nano 2012, 6, 972.
doi: 10.1021/nn204676j
Xiao, X.; Wei, G.; Wang, S.; Zimmerman, J. D.; Renshaw, C. K.; Thompson, M. E.; Forrest, S. R. Adv. Mater. 2012, 24, 1956.
doi: 10.1002/adma.201104261
Lassiter, B. E.; Zimmerman, J. D.; Panda, A.; Xiao, X.; Forrest, S. R. Appl. Phys. Lett. 2012, 101, 063303.
doi: 10.1063/1.4742921
Zimmerman, J. D.; Xiao, X.; Renshaw, C. K.; Wang, S.; Diev, V. V.; Thompson, M. E.; Forrest, S. R. Nano Lett. 2012, 12, 4366.
doi: 10.1021/nl302172w
Chen, G.; Yokoyama, D.; Sasabe, H.; Hong, Z.; Yang, Y.; Kido, J. Appl. Phys. Lett. 2012, 101, 083904.
doi: 10.1063/1.4747623
Chen, G.; Sasabe, H.; Wang, Z.; Wang, X.; Hong, Z.; Kido, J.; Yang, Y. Phys. Chem. Chem. Phys. 2012, 14, 14661.
doi: 10.1039/c2cp42445b
Chen, G.; Sasabe, H.; Wang, Z.; Wang, X. F.; Hong, Z.; Yang, Y.; Kido, J. Adv. Mater. 2012, 24, 2768.
doi: 10.1002/adma.v24.20
Sasabe, H.; Igrashi, T.; Sasaki, Y.; Chen, G.; Hong, Z.; Kido, J. RSC Adv. 2014, 4, 42804.
doi: 10.1039/C4RA08171D
Chen, G.; Sasabe, H.; Lu, W.; Wang, X. F.; Kido, J.; Hong, Z.; Yang, Y. J. Mater. Chem. C 2013, 1, 6547.
doi: 10.1039/c3tc31243g
Yang, D.; Yang, Q.; Yang, L.; Luo, Q.; Huang, Y.; Lu, Z.; Zhao, S.; Chem. Commun. 2013, 49, 10465.
doi: 10.1039/c3cc46217j
Yang, L.; Yang, Q.; Yang, D.; Luo, Q.; Zhu, Y.; Huang, Y.; Zhao, S.; Lu, Z. J. Mater. Chem. A 2014, 2, 18313.
doi: 10.1039/C4TA03859B
Yang, D.; Jiao, Y.; Huang, Y.; Zhuang, T.; Yang, L.; Lu, Z.; Pu, X.; Sasabe, H.; Kido, J. Org. Electron. 2016, 32, 179.
doi: 10.1016/j.orgel.2016.02.009
Yang, D.; Zhu, Y.; Jiao, Y.; Yang, L.; Yang, Q.; Luo, Q.; Pu, X.; Huang, Y.; Zhao, S.; Lu, Z. RSC Adv. 2015, 5, 20724.
doi: 10.1039/C5RA00770D
Yang, D.; Yang, Q.; Yang, L.; Luo, Q.; Chen, Y.; Zhu, Y.; Huang, Y.; Lu, Z.; Zhao, S. Chem. Commun. 2014, 50, 9346.
doi: 10.1039/C4CC03831B
Yang, D.; Yang, L.; Huang, Y.; Jiao, Y.; Igarashi, T.; Chen, Y.; Lu, Z.; Pu, X.; Sasabe, H.; Kido, J. ACS Appl. Mater. Inter. 2015, 7, 13675.
doi: 10.1021/acsami.5b03558
Yang, D.; Jiao, Y.; Yang, L.; Chen, Y.; Mizoi, S.; Huang, Y.; Pu, X.; Lu, Z.; Sasabe, H.; Kido, J. J. Mater. Chem. A 2015, 3, 17704.
doi: 10.1039/C5TA03971A
Chen, Y.; Zhu, Y.; Yang, D.; Luo, Q.; Yang, L.; Huang, Y.; Zhao, S.; Lu, Z. Chem. Commun. 2015, 51, 6133.
doi: 10.1039/C5CC00704F
Yang, L.; Yang, D.; Chen, Y.; Luo, Q.; Zhang, M.; Huang, Y.; Lu, Z.; Sasabe, H.; Kido, J. RSC Adv. 2016, 6, 1877.
doi: 10.1039/C5RA24186C
So, S.; Choi, H.; Kim, C.; Cho, N.; Ko, H. M.; Lee, J. K.; Ko, J. Sol. Energy Mater. Sol. Cells 2011, 95, 3433.
doi: 10.1016/j.solmat.2011.07.034
So, S.; Choi, H.; Ko, H. M.; Kim, C.; Peak, S.; Cho, N.; Song, K.; Lee, J. K.; Ko, J. Sol. Energy Mater. Sol. Cells 2012, 98, 224.
doi: 10.1016/j.solmat.2011.10.017
Peak, S.; Choi, H.; Jo, H.; Lee, K.; Song, K.; Siddiqui, S. A.; Sharma, G. D.; Ko, J. J. Mater. Chem. C 2015, 3, 7029.
An, Q.; Zhang, F.; Zhang, J.; Tang, W.; Deng, Z.; Hu, B. Energy Environ. Sci. 2016, 9, 281.
doi: 10.1039/C5EE02641E
Fan, B.; Maniglio, Y.; Simeunovic, M.; Kuster, S.; Geiger, T.; Hany, R.; Nüesch, F. Int. J. Photoenergy 2009, DOI:10.1155/2009/581068.
doi: 10.1155/2009/581068
Spencer, S.; Hu, H.; Li, Q.; Ahn, H. Y.; Qaddoura, M.; Yao, S.; Ioannidis, A.; Belfield, K.; Collison, C. J. Prog. Photovoltaics:Res. Appl. 2014, 22, 488.
doi: 10.1002/pip.v22.4
Spencer, S. D.; Bougher, C.; Heaphy, P. J.; Murcia, V. M.; Gallivan, C. P.; Monfette, A.; Andersen, J. D.; Cody, J. A.; Conrad, B. R.; Collson, C. J. Sol. Energy Mater. Sol. Cells 2013, 112, 202.
doi: 10.1016/j.solmat.2013.01.008
Brück, S.; Krause, C.; Turrisi, R.; Beverina, L.; Wilken, S.; Saak, W.; Lützen, A.; Borchert, H.; Schiek, M.; Parisi, J. Phys. Chem. Chem. Phys. 2014, 16, 1067.
doi: 10.1039/C3CP54163K
Kylberg, W.; Zhang, Y.; Aebersold, A.; Castro, de F. A., Geiger, T.; Heier, J.; Kuster, S.; Ma, C. Q.; Bäuerle, P.; Nüesch, F.; Tisserant, J. N.; Hany, R. Org. Electron. 2012, 13, 1204.
doi: 10.1016/j.orgel.2012.03.022
Rao, B. A.; Yesudas, K.; Kumar, G. S.; Bhanuprakash, K.; Rao, V. J.; Sharma, G. D.; Singh, S. P. Photochem. Photobiol. Sci. 2013, 12, 1688.
doi: 10.1039/c3pp50087j
Lam, S. L.; Liu, X.; Zhao, F.; Lee, C. K.; Kwan, W. L. Chem. Commun. 2013, 49, 4543.
doi: 10.1039/c3cc40403j
Pelle, A. M. D.; Homnick, P. J.; Bae, Y.; Lahti, P. M.; Thayumanavan, S. J. Phys. Chem. C 2014, 118, 1793.
doi: 10.1021/jp410362d
Karak, S.; Homnick, P. J.; Pelle, A. M. D.; Bae, Y.; Duzhko, V. V.; Liu, F.; Russell, T. P.; Lahti, P. M.; Thayumanavan, S. ACS Appl. Mater. Inter. 2014, 6, 11376.
doi: 10.1021/am501965d
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101
Xiaofang DONG , Yue YANG , Shen WANG , Xiaofang HAO , Yuxia WANG , Peng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
Mengzhen JIANG , Qian WANG , Junfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Bin HE , Hao ZHANG , Lin XU , Yanghe LIU , Feifan LANG , Jiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086
Jiahui CHEN , Tingting ZHENG , Xiuyun ZHANG , Wei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Lina Feng , Guoyu Jiang , Xiaoxia Jian , Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
Qinjin DAI , Shan FAN , Pengyang FAN , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Yong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326