Citation: Zhu Lei, Li Bojie, Yan Feng, Wang Liansheng. Progress in the Synthesis of DNA-Like Double Strand Polymers[J]. Chinese Journal of Organic Chemistry, ;2017, 37(11): 2800-2817. doi: 10.6023/cjoc201604052 shu

Progress in the Synthesis of DNA-Like Double Strand Polymers

  • Corresponding author: Zhu Lei, lei.zhu@hbeu.edu.cn Wang Liansheng, wangls@hbeu.edu.cn
  • Received Date: 30 April 2017
    Revised Date: 21 July 2017
    Available Online: 11 November 2017

    Fund Project: the Hubei Provincial Department of Education Science and Technology Research Projects Q20162705the Natural Science Foundation of Hubei Province 2016CFB104the Natural Science Foundation of Hubei Province 2015CFC772Project supported by the National Natural Science Foundation of China (No. 21304032), the Natural Science Foundation of Hubei Province (Nos. 2016CFB104, 2015CFC772), the Hubei Provincial Department of Education Science and Technology Research Projects (No. Q20162705)the National Natural Science Foundation of China 21304032

Figures(23)

  • Deoxyribonucleic acid (DNA) is the genetic material determining the makeup of all living cells and many viruses. DNA has a self-replicating feature which consists of two polynucleotide chains in the form of a double helix. The synthesis of DNA-like double strand polymers has attracted much attention over recent years due to the development of self-assembly chemistry and organic synthesis technology. The synthesis of double strand polymers divided by the interaction including non-covalent bonding and covalent bonding between linker and backbone is sumarized. Poly-norbornene which could be performed as effcient backbone is also described. A series of isotactic double strand polymeric ladderphanes have been successfully acheived based on such poly-norbornene backbone.
  • 加载中
    1. [1]

      Watson, J. D.; Crick, F. H. C. Nature 1953, 171, 737.  doi: 10.1038/171737a0

    2. [2]

      (a) Schuster, G. B. Acc. Chem. Res. 2000, 33, 253.
      (b) Fink, H.-W.; Schonenberger, C. Nature 1999, 398, 407.
      (c) Abi, A.; Ferapontova, E. E. J. Am. Chem. Soc. 2012, 134, 14499.
      (d) Genereux, J. C.; Boal, A. K.; Barton, J. K. J. Am. Chem. Soc. 2010, 132, 891.
      (e) Duprey, J.-L. H. A.; Carr, S. J.; Horswell, S. L.; Kowalski, J.; Tucker, J. H. R. J. Am. Chem. Soc. 2015, 138, 746.

    3. [3]

      (a) Gill, R.; Zayats, M.; Willner, I. Angew. Chem., Int. Ed. 2008, 47, 7602.
      (b) Cheng, C. S.; Rai, K.; Garber, M.; Hollinger, A.; Robbins, D.; Anderson, S.; Macbeth, A.; Tzou, A.; Carneiro, M. O.; Raychowdhury, R.; Russ, C.; Hacohen, N.; Gershenwald, J. E.; Lennon, N.; Nusbaum, C.; Chin, L.; Regev, A.; Amit, I. Nat. Commun. 2013, 4, 3672.
      (c) Houlton, A.; Pike, A. R.; Galindo, M. A.; Horrocks, B. R. Chem. Commun. 2009, 14, 1797.

    4. [4]

      (a) Kasumov, A. Y.; Kociak, M.; Gueron, S.; Reulet, B.; Volkov, V. T.; Klinov, D. V.; Bouchait, H. Science 2001, 291, 280.
      (b) Hopkins, D. S.; Pekker, D.; Goldbart, P. M.; Bezryadin, A. Science 2005, 308, 1762.
      (c) Watson, S. M. D.; Pike, A. R.; Pate, J.; Houlton, A.; Horrocks, B. R. Nanoscale 2014, 6, 4027.

    5. [5]

      (a) Joyce, G. F. Nature 1989, 338, 217.
      (b) Bochman, M. L.; Schwacha, A. Nature 2015, 524, 186.
      (c) Dewar, J. M.; Budzowska, M.; Walter, J. C. Nature 2015, 525, 345.
      (d) Creager, R. L.; Li, Y.-L.; Macalpine, D. M. Cell 2015, 161, 418.
      (e) Bell, S. P. Science 2014, 346, 418.

    6. [6]

      Orgel, L. E. Nature 1992, 358, 203.  doi: 10.1038/358203a0

    7. [7]

      (a) Von Kiedrowski, G. Angew. Chem., Int. Ed. 1986, 25, 932.
      (b) Brandsch, R.; Luther, A.; Von Kiedrowski, G. Nature 1998, 396, 245.
      (c) Bag, B. G.; Von Kiedrowski, G. Pure Appl. Chem. 1996, 68, 214.

    8. [8]

      Peins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew. Chem., Int. Ed. 2001, 40, 2382.  doi: 10.1002/(ISSN)1521-3773

    9. [9]

      (a) Tjivikua, T.; Ballester, P.; Rebek, J. Jr. J. Am. Chem. Soc. 1990, 112, 1249.
      (b) Feng, Q.; Park, P. K.; Rebek, J., Jr. Science 1992, 256, 1179.
      (c) Conn, M. M.; Winter, E. A.; Rebek, J. Jr. Acc. Chem. Res. 1994, 27, 198.

    10. [10]

      Würthner, F.; Rebek, J.Angew. Chem., Int. Ed. 1995, 34, 446.  doi: 10.1002/(ISSN)1521-3773

    11. [11]

      Terfort, A.; Von Kiedrowski, G. Angew. Chem., Int. Ed. 1992, 31, 654.  doi: 10.1002/(ISSN)1521-3773

    12. [12]

      Wang, B.; Sutherland, I. O. Chem. Commum. 1997, 1495.
       

    13. [13]

      Harada, A.; Li, J.; Kamachi, M. Nature 1994, 370, 126.  doi: 10.1038/370126a0

    14. [14]

      (a) Berl, V.; Huc, I.; Khoury, R. G.; Lehn, J.-M. Chem.-Eur. J. 2001, 7, 2810.
      (b) Berl, V.; Huc, I.; Khoruy, R. G.; Lehn, J.-M. Chem.-Eur. J. 2001, 7, 2789.

    15. [15]

      Sugimoto, T.; Suzuki, T.; Shinkai, S.; Sada, K. J. Am. Chem. Soc. 2007, 129, 270.  doi: 10.1021/ja067613h

    16. [16]

      (a) Ikeda, M.; Tanaka, Y.; Hasegawa, T.; Furusho, Y.; Yashima, E. J. Am. Chem. Soc. 2006, 128, 6806.
      (b) Maeda, T.; Furusho, Y.; Sakurai, S.-I.; Kumaki, J.; Okoshi, K.; Yashima, E. J. Am. Chem. Soc. 2008, 130, 7938.
      (c) Makiguchi, W.; Kobayashi, S.; Furusho, Y.; Yashima, E. Angew. Chem., Int. Ed. 2013, 52, 5275.

    17. [17]

      Park, Y.; Kanatzidis, M. G. Angew. Chem., Int. Ed. 1990, 29, 914.  doi: 10.1002/(ISSN)1521-3773

    18. [18]

      Mohr, F.; Jennings, M. C.; Puddephatt, R. J. Angew. Chem., Int. Ed. 2004, 43, 969.  doi: 10.1002/(ISSN)1521-3773

    19. [19]

      Schultheiss, N.; Powell, D. R.; Bosch, E. Inorg. Chem. 2003, 42, 8886.  doi: 10.1021/ic034994g

    20. [20]

      Reger, D. L.; Semeniuc, R. F.; Rassolov, V.; Smith, M. D. Inorg. Chem. 2004, 43, 537.  doi: 10.1021/ic035207i

    21. [21]

      Nagahama, S.; Matsumoto, A. J. Am. Chem. Soc. 2001, 123, 12176.  doi: 10.1021/ja011575e

    22. [22]

      Screen, T. E. O.; Thorne, J. R. G.; Denning, R. G.; Bucknall, D. G.; Anderson, H. L. J. Am. Chem. Soc. 2002, 124, 9712.  doi: 10.1021/ja026205k

    23. [23]

      Tang, H.; Sun, J.; Jiang, J.; Zhou, X.; Hu, T.; Xie, P.; Zhang, R. J. Am. Chem. Soc. 2002, 124, 10482.  doi: 10.1021/ja025650c

    24. [24]

      Anderson, A. W.; Merckling, N. G. US 2721189, 1955[Chem. Abstr. 1956, 50, 3008i].

    25. [25]

      (a) Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H. Angew. Chem. 1955, 67, 426.
      (b) Natta, G. J. Polym. Sci. 1955, 16, 143.

    26. [26]

      Truett, W. L.; Johnson, D. R.; Robinson, I. M.; Montague, B. A. J. Am. Chem. Soc. 1960, 82, 2337.  doi: 10.1021/ja01494a057

    27. [27]

      (a) Ivin, K. J.; Laverty, D. T.; Rooney, J. J. Makromol. Chem. 1977, 178, 1545.
      (b) Ivin, K. J.; Laverty, D. T.; Rooney, J. J.; Watt, P. Recl. Trav. Chim. Pays-Bas 1977, 96, 54.
      (c) Ivin, K. J.; Lapienis, G.; Rooney, J. J. Chem. Commun. 1979, 1068.
      (d) Ivin, K. J.; Lapienis, G.; Rooney, J. J. Polymer 1980, 21, 436.

    28. [28]

      Beaven, G. H.; Johnston, E. A.; Miller, R. G.; Willis, H. A. Molecular Spectroscopy, Heywood & Co., Ltd., London, 1961.
       

    29. [29]

      (a) Schrock, R. R. Acc. Chem. Res. 1990, 23, 158.
      (b) Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J.; Dimare, M.; Oregan, M. J. Am. Chem. Soc. 1990, 112, 3875.
      (c) Schrock, R. R.; Hoveyda, H. Angew. Chem., Int. Ed. 2003, 42, 4592.

    30. [30]

      (a) Kanaoka, S.; Grubbs, R. H. Macromolecules 1995, 28, 4707.
      (b) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. 1995, 34, 2039.
      (c) Schwab, P.; Grubbs. R. H. J. Am. Chem. Soc. 1996, 118, 100.
      (d) Weck, M.; Schwab, P.; Grubbs, R. H. Macromolecules 1996, 29, 1789.
      (e) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18.

    31. [31]

      (a) Grubbs, R. H.; Novak, B. M.; McGrath, D. M.; Benedicto, A.; France, M.; Nguyen, S. T. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.)1992, 203, 20.
      (b) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100.
      (c) Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 3974.

    32. [32]

      (a) Weskamp, T.; Schattenmann, W. C.; Spiegler, M.; Herrmann, W. A. Angew. Chem., Int. Ed. 1998, 37, 2490.
      (b) Ackerman, L.; Fürstner, A.; Weskamp, T.; Kohl, F. J.; Herrmann, W. A. Tetrahedron Lett. 1999, 40, 4787.
      (c) Scholl, M.; Trnka, T. M.; Morgan, J. P.; Grubbs, R. H. Tetrahydron Lett. 1999, 40, 2247.

    33. [33]

      O'Dell, R.; McConville, D. H.; Hofmeister, G. E.; Schrock, R. R. J. Am. Chem. Soc. 1994, 116, 3414.  doi: 10.1021/ja00087a028

    34. [34]

      Delaude, L.; Demonceau, A.; Noels, A. F. Macromolecules 2003, 36, 1446.  doi: 10.1021/ma021315x

    35. [35]

      (a) Maughon, B. R.; Weck, M.; Mohr, B.; Grubbs, R. H. Macromolecules 1997, 30, 257.
      (b) Weck, M.; Mohr, B.; Maughon, B. R.; Grubbs, R. H. Macromolecules 1997, 30, 6430.

    36. [36]

    37. [37]

      Lin, W.-Y.; Murugesh, M. G.; Sudhakar, S.; Yang, H.-C.; Tai, H.-C.; Chang, C.-S.; Liu, Y.-H.; Wang, Y.; Chen, I.-W. P.; Chen, C.-H.; Luh, T.-Y. Chem.-Eur. J. 2006, 12, 324.  doi: 10.1002/(ISSN)1521-3765

    38. [38]

      Wang, H.-W.; Liu, Z.-C.; Chen, C.-H.; Lim, T.-S.; Fang, WS.; Chao, C.-G.; Yu, J.-Y.; Lee, S.-L.; Chen, C.-H.; Huang, S.-L.; Luh, T.-Y. Chem.-Eur. J. 2009, 15, 5719.  doi: 10.1002/chem.v15:23

    39. [39]

      Lin, W.-Y.; Wang, H.-W.; Liu, Z.-C.; Xu, J.; Chen, C.-W.; Yang, Y.-C.; Huang, S.-L.; Yang, H.-C.; Luh, T.-Y. Chem. Asian J. 2007, 2, 764.  doi: 10.1002/(ISSN)1861-471X

    40. [40]

      Zhu, L.; Lin, N.-T.; Xie, Z.-Y.; Lee, S.-L.; Huang, S.-L.; Yang, J.-H.; Lee, Y.-D.; Chen, C.-H.; Chen, C.-H.; Luh, T.-Y. Macromolecules 2013, 46, 656.  doi: 10.1021/ma302293q

    41. [41]

      Yang, H.-C.; Lin, S.-Y.; Yang, H.-C.; Lin, C.-L.; Tsai, L.; Huang, S.-L.; Chen, I.-W. P.; Chen, C.-H.; Jin, B.-Y.; Luh, T.-Y. Angew. Chem., Int. Ed. 2006, 45, 726.  doi: 10.1002/(ISSN)1521-3773

    42. [42]

      Brock, C. P.; Fu, Y. Acta Crystallogr., Sect B: Struct. Sci. 1997, 53, 928.  doi: 10.1107/S0108768197005132

    43. [43]

      Cai, L. M.S. Thesis, National Taiwan University, Taipei, 2002 (in Chinese).

    44. [44]

      Yang H.-J. Ph.D. Dissertation, National Taiwan University, Taipei, 2006 (in Chinese).

    45. [45]

      Lin, N.-T.; Lin, S.-Y.; Lee, S.-L.; Chen, C.-H.; Hsu, C.-H.; Hwang, L.-P.; Xie, Z.-Y.; Chen, C.-H.; Huang, S.-L.; Luh, T.-Y. Angew. Chem., Int. Ed. 2007, 46, 4481.  doi: 10.1002/(ISSN)1521-3773

    46. [46]

      Lee, S.-L.; Lin, N.-T.; Liao, W.-C.; Chen, C.-H.; Yang, H.-C.; Luh, T.-Y. Chem. Eur. J. 2009, 15, 11594.  doi: 10.1002/chem.200901634

    47. [47]

      (a) Chou, C.-M.; Lee, S.-L.; Chen, C.-H.; Biju, A. T.; Wang, H.-W.; Wu, Y.-L.; Zhang, G.-F.; Yang, K.-W.; Lim, T.-S.; Huang, M.-J.; Tsai, P.-Y.; Lin, K.-C.; Huang, S.-L.; Chen, C.-H.; Luh, T.-Y. J. Am. Chem. Soc. 2009, 131, 12579.
      (b) Chen, C.-W.; Chang, H.-Y.; Lee, S.-L.; Hsu, I.-J.; Lee, J.-J.; Chen, C.-H.; Luh, T.-Y. Macromolecules 2010, 43, 8741.
      (c) Yang, K.-W.; Xu, J.; Chen, C.-H.; Huang, H.-H.; Yu, J.-Y.; Lim, T.-S.; Chen, C.-H.; Luh, T.-Y. Macromolecules 2010, 43, 5188.
      (d) Huang, H.-H.; Chao, C.-G.; Lee, S.-L.; Wu, H.-J.; Chen, C.-H.; Luh, T.-Y. Org. Biomol. Chem. 2012, 10, 5948.
      (e) Yeh, N.-H.; Chen, C.-W.; Lee, S.-L.; Wu, H.-J.; Chen, C.-H.; Luh, T.-Y. Macromolecules 2012, 45, 2662.

    48. [48]

      For a review, see: Luh, T.-Y. Acc. Chem. Res. 2013, 46, 378.  doi: 10.1021/ar300170b

    49. [49]

      For reviews, see: (a) Cordova, A.; Rios, R. Angew. Chem., Int. Ed. 2009, 48, 8827.
      (b) Schrock, R. R. Dalton Trans. 2011, 40, 7484.
      (c) Gottumukkala, A. L.; Madduri, A. V. R.; Minnaard, A. J. ChemCatChem 2012, 4, 462.
      (d) Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592.

    50. [50]

      (a) Jiang, A. J.; Zhao, Y.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 16630.
      (b) Peryshkov, D. V.; Schrock, R. R.; Takase, M. K.; Müller, P.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 20754.
      (c) Marinescu, S. C.; Schrock, R. R.; Müller, P.; Takase, M. K.; Hoveyda, A. H. Organometallics 2011, 30, 1780.

    51. [51]

      (a) Ibrahem, I.; Yu, M.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3844.
      (b) Banchet-Cadeddu, A.; Henon, E.; Dauchez, M.; Renault, J.-H.; Monneaux, F.; Haudrechy, A. Org. Biomol. Chem. 2011, 9, 3080.

    52. [52]

      (a) Malcolmson, S. J.; Meek, S. J.; Sattely, E. S.; Schrock, R. R.; Hoveyda, A. H. Nature 2008, 456, 933.
      (b) Sattely, E. S.; Meek, S. J.; Malcolmson, S. J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 943.
      (c) Yu, M.; Wang, C.; Kyle, A. F.; Jakubec, P.; Dixon, D. J.; Schrock, R. R.; Hoveyda, A. H. Nature 2011, 479, 88.

    53. [53]

      (a) Flook, M. M.; Jiang, A. J.; Schrock, R. R.; Muller, P.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 7962.
      (b) Flook, M. M.; Gerber, L. C. H.; Debelouchina, G. T.; Schrock, R. R. Macromolecules 2010, 43, 7515.
      (c) Flook, M. M.; Ng, V. W. L.; Schrock, R. R. J. Am. Chem. Soc. 2011, 133, 1784.

    54. [54]

      Zhu, L.; Flook, M. M.; Lee, S.-L.; Chan, L.-W.; Huang, S.-L.; Chiu, C.-W.; Chen, C.-H.; Schrock, R. R.; Luh, T.-Y. Macromolecules 2012, 45, 8166.  doi: 10.1021/ma301686f

  • 加载中
    1. [1]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    2. [2]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    3. [3]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    4. [4]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    5. [5]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    6. [6]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    7. [7]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    8. [8]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    9. [9]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    10. [10]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    11. [11]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    12. [12]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    13. [13]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    14. [14]

      Jiamin Zhang Zhen Fan Jianzhong Du . Integrated Teaching Method Combining Domestic and International Perspectives: A Case Study on Cultivating Innovative Talents in Polymeric Biomaterials. University Chemistry, 2025, 40(7): 156-160. doi: 10.12461/PKU.DXHX202409131

    15. [15]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    16. [16]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    17. [17]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    18. [18]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    19. [19]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

    20. [20]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083

Metrics
  • PDF Downloads(23)
  • Abstract views(3193)
  • HTML views(333)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return