Citation: Xiao Huifeng, Zhang Min, Liu Jie, Han Zhixiang, Yang Liuqing, Wu Xiangyang. A Novel Rhodamine B Fluorescent Probe for Hg2+: Synthesis and Evaluation[J]. Chinese Journal of Organic Chemistry, ;2016, 36(10): 2413-2418. doi: 10.6023/cjoc201604040 shu

A Novel Rhodamine B Fluorescent Probe for Hg2+: Synthesis and Evaluation

  • Corresponding author: Zhang Min, zhangmin@ujs.edu.cn Wu Xiangyang, wuxy@ujs.edu.cn
  • Received Date: 19 April 2016
    Revised Date: 19 May 2016

    Fund Project: Natural Science Foundation of Jiangsu Province BK20140536

Figures(11)

  • A novel fluorescent probe R based on rhodamine B was synthesized by the condensation of rhodamine B hydrazide and phenylglyoxal monohydrate, followed by reduction with NaBH4, and its structure was characterized by 1H NMR, 13C NMR, ESI-MS, elemental analysis, and X-ray single analysis. It exhibited very strong fluorescence responses to Hg2+ with remarkably high selectivity for Hg2+ over other metal ions. When the concentration of Hg2+ was in the range of 5×10-7~2×10-6 mol/L, there was a good linearity between the fluorescence intensity and the concentration of Hg2+. The fluorescence imaging experiments of Hg2+ in MGC-803 living cells revealed its potential application in biological system.
  • 加载中
    1. [1]

    2. [2]

      Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D. Environ. Toxicol. 2003, 18, 149.

    3. [3]

      Wolfe, M. F.; Schwarzbach, S.; Sulaiman, R. A. Environ. Ttoxicol. Chem. 1998, 17, 146. 

    4. [4]

      Delafiori, J.; Ring, G.; Furey, A. Talanta 2016, 153, 306.

    5. [5]

      Amiri, N.; Rofouei, M. K.; Ghasemi, J. B. Anal. Methods 2016, 8, 1111. 

    6. [6]

      Cobbina, S. J.; Duwiejuah, A. B.; Quansah, R.; Obiri, S.; Bakobie, N. Int. J. Environ. Res. Public Health 2015, 12, 10620. 

    7. [7]

      Wang, H.; Chen, B.-B.; Zhu, S.-Q.; Yu, X.-X.; He, M.; Hu, B. Anal. Chem. 2016, 88, 796.

    8. [8]

      Tan, H.-L.; Zhang, Y.-Q.; Chen, Y. Sens. Actuators, B 2011, 156, 120. 

    9. [9]

      Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2008, 37, 1465. 

    10. [10]

      Kim, H. N.; Ren, W. X.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2012, 41, 3210. 

    11. [11]

      Yang, X.-B.; Yang, B.-X.; Ge, J.-F.; Xu, Y.-J.; Xu, Q.-F.; Liang, J.; Lu, J.-M. Org. Lett. 2011, 13, 2710.

    12. [12]

      Zhu, M.; Yuan, M.-J.; Liu, X.-F.; Xu, J.-L.; Lv, J.; Huang, C.-S.; Liu, H.-B.; Li, Y.-L.; Wang, S.; Zhu, D.-B. Org. Lett. 2008, 10, 1481.

    13. [13]

       

    14. [14]

       

    15. [15]

      Li, K.-B.; Wang, H.; Zang, Y.; He, X.-P.; Li, J.; Chen, G.-R.; Tian, H. ACS Appl. Mater. Inter. 2014, 6, 19600. 

    16. [16]

      Chen, X.; Pradhan, T.; Wang, F.; Kim, J. S.; Yoon, J. Chem. Rev. 2012, 112, 1910.

    17. [17]

      Yoon, S.; Albers, A. E.; Wong, A. P.; Chang, C. J. J. Am. Chem. Soc. 2005, 127, 16030. 

    18. [18]

      Chen, X.-L.; Meng, X.-M.; Wang, S.-X.; Cai, Y.-L.; Feng, Y.; Zhu, M.-Z.; Guo, Q.-X. Dalton. Trans. 2013, 42, 14819.

    19. [19]

      Saha, S.; Mahato, P.; Reddy, G. U.; Suresh, E.; Chakrabarty, A.; Baidya, M.; Ghosh, S. K.; Das, A. Inorg. Chem. 2012, 51, 336.

    20. [20]

      Mahato, P.; Saha, S.; Suresh, E.; Di Liddo, R.; Parnigotto, P. P.; Conconi, M. T.; Kesharwani, M. K.; Ganguly, B.; Das, A. Inorg. Chem. 2012, 51, 1769.

    21. [21]

      Yan, F.-Y.; Wang, M.; Cao, D.-L.; Yang, N.; Fu, Y.; Chen, L.; Chen, L.-G. Dyes Pigm. 2013, 98, 42.

    22. [22]

      Wang, M.; Wen, J.; Qin, Z.-H.; Wang, H.-M. Dyes Pigm. 2015, 120, 208.

    23. [23]

      Wang, J.-L.; Li, H.; Long, L.-P.; Xiao, G.-Q.; Xie, D. J. Lumin. 2012, 132, 2456. 

    24. [24]

      Tian, M.-Z.; Hu, M.-M.; Fan, J.-L.; Peng, X.-J.; Wang, J.-Y.; Sun, S.-G.; Zhang, R. Bioorg. Chem. Lett. 2013, 23, 2916. 

    25. [25]

      Jiang, L.; Wang, L.; Zhang, B.; Yin, G.; Wang, R.-Y. Eur. J. Inorg. Chem. 2010, 28, 4438.

    26. [26]

      Du, J.-J.; Fan, J.-L.; Peng, X.-J.; Sun, P.-P.; Wang, J.-Y.; Li, H.-L.; Sun, S.-G. Org. Lett. 2010, 12, 476.

    27. [27]

      Liu, A.-F.; Yang, L.; Zhang, Z.-Y.; Zhang, Z.-L.; Xu, D.-M. Dyes Pigm. 2013, 99, 472.

    28. [28]

      Yang, X.-F.; Guo, X.-Q.; Zhao, Y.-B. Talanta 2002, 57, 883.

  • 加载中
    1. [1]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    7. [7]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    8. [8]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    9. [9]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    10. [10]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    11. [11]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    12. [12]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    13. [13]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    16. [16]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    17. [17]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    18. [18]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    19. [19]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(0)
  • Abstract views(1444)
  • HTML views(184)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return