Citation: Shi Yanjun, Ni Zhenjie, Zhen Yonggang, Dong Huanli, Hu Wenping. Utilization of C—H Bond Activation in Synthesis of Organic Semiconductors[J]. Chinese Journal of Organic Chemistry, ;2016, 36(8): 1741-1764. doi: 10.6023/cjoc201604009 shu

Utilization of C—H Bond Activation in Synthesis of Organic Semiconductors

  • Corresponding author: Zhen Yonggang, zhenyg@iccas.ac.cn Hu Wenping, huwp@iccas.ac.cn
  • Received Date: 5 April 2016
    Revised Date: 19 May 2016

    Fund Project: the Ministry of Science and Technology of China Nos. 2013CB933504,2014CB643600Project supported by the National Natural Science Foundation of China Nos. 91222203,91233205,51303185the Strategic Priority Research Program of Chinese Academy of Sciences No. XDB12000000

Figures(8)

  • The development of C—H bond activiation and the typical reaction mechanism is introduced in the first part. The progress of organic small molecule and polymer semiconductors prepared by C—H activation is reviewed. The applicability of C—H activation and the performance of organic semiconductors achieved by C—H activation are discussed in detail.
  • 加载中
    1. [1]

    2. [2]

      Babudri, F.; Cicco, S. R.; Farinola, G. M.; Naso, F.; Bolognesi, A.; Porzio, W. Macromol. Rapid Commun. 1996, 17, 905.(b) Bao, Z. N.; Chan, W. K.; Yu, L. P. J. Am. Chem. Soc. 1995, 117, 12426. 

    3. [3]

      Kowalski, S.; Allard, S.; Zilberberg, K.; Riedl, T.; Scherf, U. Prog. Polym. Sci. 2013, 38, 1805.

    4. [4]

      Osedach, T. P.; Andrew, T. L.; Bulović, V. Energy Environ. Sci. 2013, 6, 711.

    5. [5]

      Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976. 

    6. [6]

      Hofmann, A. W. Ber. 1883, 16, 558. 

    7. [7]

      Murahashi, S. J. Am. Chem. Soc. 1955, 77, 6403.

    8. [8]

      Ohta, A.; Akita, Y.; Ohkuwa, T.; Chiba, M.; Fukunaga, R.; Miyafuji, A.; Nakata, T.; Tani, N.; Aoyagi, Y. Heterocycles 1982, 31, 1951.(b) Marc, S.; Julien, P.; Emmanuelle, S.; Lemaire, M. Tetrahedron Lett. 1999, 40, 5873.

    9. [9]

      Mercier, L. G.; Leclerc, M. Acc. Chem. Res. 2013, 46, 1597. 

    10. [10]

      Wang, X. C.; Wang, K.; Wang, M. F. Polym. Chem. 2015, 6, 1846. 

    11. [11]

      Matsidik, R.; Martin, J.; Schmidt, S.; Obermayer, J.; Lombeck, F.; Nubling, F.; Komber, H.; Fazzi, D.; Sommer, M. J. Org. Chem. 2015, 80, 980. 

    12. [12]

      Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172.

    13. [13]

      He, C.-Y.; Fan, S.; Zhang, X. J. Am. Chem. Soc. 2010, 132,12850. 

    14. [14]

      Yoon, M. H.; Facchetti, A.; Stern, C. E.; Marks. T. J. J. Am. Chem. Soc. 2006, 128, 5792. 

    15. [15]

      Zhang, J.; Chen, W.; Rojas, A. J.; Jucov, E. V.; Timofeeva, T. V.; Parker, T. C.; Barlow, S.; Marder, S. R. J. Am. Chem. Soc. 2013, 135, 16376. 

    16. [16]

      Pham, M. V.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 3484. 

    17. [17]

      Delord, J. W.; Nimphius, C.; Wang, H.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 13001. 

    18. [18]

      Review on the synthesis and reactions of dibenzo- [a,e]pentalenes:(a) Saito, M. Symmetry 2010, 2, 950.(b) Brand, K. Dtsch. Ber. Chem. Ges. 1912, 45, 3071.(c) Ballester, M.; CastaÇer, J.; Riera, J.; Armet, O. J. Org. Chem. 1986, 51, 1100.(d) Zhang, H.; Karasawa, T.; Yamada, H.; Wakamiya, A.; Yamaguchi, S. Org. Lett. 2009, 11, 3076.(e) Levi, Z. U.; Tilley, T. D. J. Am. Chem. Soc. 2009, 131, 2796.(f) Kawase, T.; Konishi, A.; Hirao, Y.; Matsumoto, K.; Kurata, H.; Kubo, T. Chem. Eur. J. 2009, 15, 2653.(g) Xu, F.; Peng, L.; Orita, A.; Otera, J. Org. Lett. 2012, 14, 3970.(h) Jeffrey, J. L.; Sarpong, R. Tetrahedron Lett. 2009, 50, 1969.(i) Hashmi, A. S. K.; Wieteck, M.; Braun, I.; Nçsel, P.; Jongbloed, L.; Rudolph, M.; Rominger, F. Adv. Synth. Catal. 2012, 354, 555.

    19. [19]

      Maekawa, T.; Segawa, Y.; Itami, K. Chem. Sci. 2013, 4, 2369.

    20. [20]

      Zhao, J.; Oniwa, K.; Asao, N.; Yamamoto, Y.; Jin, T. J. Am. Chem. Soc. 2013, 135, 10222. 

    21. [21]

      Kawamata, Y.; Tokuji, S.; Yorimitsu, H.; Osuka, A. Angew. Chem., Int. Ed. 2011, 50, 8867. 

    22. [22]

      Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496.(b) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848.(c) Sun, H. Y.; Gorelsky, S. I.; Stuart, D. R.; Campeau, L. C.; Fagnou, K. J. Org. Chem. 2010, 75, 8180.(d) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Org. Chem. 2012, 77, 658. 

    23. [23]

      Mitamura, Y.; Yorimitsu, H.; Oshima, K.; Osuka, A. Chem. Sci. 2011, 2, 2017.

    24. [24]

      Qian, H. L.; Wang, Z. H.; Y, W.; Zhu, D. B. J. Am. Chem. Soc. 2007, 129, 10664. 

    25. [25]

      Lv, A.; Puniredd, S. R.; Zhang, J.; Li, Z.; Zhu, H.; Jiang, W.; Dong, H.; He, Y.; Jiang, L.; Li, Y.; Pisula, W.; Meng, Q.; Hu, W.; Wang, Z. Adv. Mater. 2012, 24, 2626.

    26. [26]

      Inganas, O.; Zhang, F.; Andersson, M. R. Acc. Chem. Res. 2009, 42, 1731. 

    27. [27]

      Zhen, Y. G.; Wang, C. R.; Wang, Z. H. Chem. Commun. 2010, 46, 1926. 

    28. [28]

      Zhang, J.; Kang, D.-Y.; Barlow, S.; Marder, S. R. J. Mater. Chem. 2012, 22, 21392. 

    29. [29]

      Liu, S.-Y.; Shi, M.-M.; Huang, J.-C.; Jin, Z.-N.; Hu, X.-L.; Pan, J.-Y.; Li, H.-Y.; Jen, A. K. Y.; Chen, H.-Z. J. Mater. Chem. A 2013, 1, 2795. 

    30. [30]

      Wang, Q. F.; Takita, R.; Kikuzaki, Y.; Ozawa, F. J. Am. Chem. Soc. 2010, 132, 11420. 

    31. [31]

      Rudenko, A. E.; Wiley, C. A.; Stone, S. M.; Tannaci, J. F.; Thompson, B. C. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 3691. 

    32. [32]

      Lu, W.; Kuwabara, J.; Kanbara, T. Macromolecules 2011, 44, 1252.

    33. [33]

      Fujinami, Y.; Kuwabara, J.; Lu, W.; Hayashi, H.; Kanbara, T. ACS Macro Lett. 2012, 1, 67.

    34. [34]

      Choi, S. J.; Kuwabara, J.; Kanbara, T. ACS Sustainable Chem. Eng. 2013, 1, 878.

    35. [35]

      Sharma, A.; Vacchani, D.; Eycken, V. Chem.-Eur. J. 2013, 19, 1158. 

    36. [36]

      Poduval, M. K.; Burrezo, P. M.; Casado, J.; López Navarrete, T. L.; Ortiz, R. P.; Kim, T. H. Macromolecules 2013, 46, 9220. 

    37. [37]

      Kuwabara, J.; Nohara, Y.; Choi, S. J.; Fujinami, Y.; Lu,W.; Yoshimura, K.; Oguma, J.; Suenobu, K.; Kanbara, T. Polym. Chem. 2013, 4, 947.

    38. [38]

      Nakabayashi, K.; Mori, H. Chem. Lett. 2013, 42, 717.

    39. [39]

      Morin, P. O.; Bura, T.; Sun, B.; Gorelsky, S. I.; Li, Y.; Leclerc, M. ACS Macro Lett. 2014, 4, 21.

    40. [40]

      Lombeck, F.; Komber, H.; Gorelsky, S. I.; Sommer, M. ACS Macro Lett. 2014, 3, 819. 

    41. [41]

      Nohara, Y.; Kuwabara, J.; Yasuda, T.; Han, L.; Kanbara, T. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1401. 

    42. [42]

      Luzio, A.; Fazzi, D.; Nübling, F.; Matsidik, R.; Straub, A.; Komber, H.; Giussani, E.; Watkins, S. E.; Barbatti, M.; Thiel, W.; Gann, E.; Thomsen, L.; McNeill, C. R.; Caironi, M.; Sommer, M. Chem. Mater. 2014, 26, 6233.

    43. [43]

      Rudenko, A. E.; Khlyabich, P. P.; Thompson, B. C. ACS Macro Lett. 2014, 3, 387. 

    44. [44]

      Wang, X.; Wang, M. Polym. Chem. 2014, 5, 5784.

    45. [45]

      Elsawy, W.; Kang, H.; Yu, K.; Elbarbary, A.; Lee, K.; Lee, J.-S. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 2926.

    46. [46]

      Sun, M. M.; Wang, W.; Liang, L. Y.; Yan, S. H.; Zhou, M. L.; Ling, Q. D. Chin. J. Polym. Sci. 2015, 33, 783. 

    47. [47]

      Kowalski, S.; Allard, S.; Scherf, U. Macromol. Rapid Commun. 2015, 36, 1061. 

    48. [48]

      Homyak, P.; Liu, Y.; Liu, F.; Russel, T. P.; Coughlin, E. B. Macromolecules 2015, 48, 6978. 

    49. [49]

      Matsidik, R.; Komber, H.; Luzio, A.; Caironi, M.; Sommer, M. J. Am. Chem. Soc. 2015, 137, 6705. 

    50. [50]

      Shao, J.; Wang, G.; Wang, K.; Yang, C.; Wang, M. Polym. Chem. 2015, 6, 6836.

    51. [51]

      Wang, K.; Wang, G.; Wang, M. Macromol. Rapid Commun. 2015, 36, 2162. 

    52. [52]

      Broll, S.; Nübling, F.; Luzio, A.; Lentzas, D.; Komber, H.; Caironi, M.; Sommer, M. Macromolecules 2015, 48, 7481.

    53. [53]

      Pouliot, J. R.; Sun, B.; Leduc, M.; Najari, A.; Li, Y.; Leclerc, M. Polym. Chem. 2015, 6, 278.

    54. [54]

      Gao, Y.; Zhang, X.; Tian, H.; Zhang, J.; Yan, D.; Geng, Y.; Wang, F. Adv. Mater. 2015, 27, 6753.

    55. [55]

      Nakanishi, T.; Shirai, Y.; Han, L. J. Mater. Chem. A 2015, 3, 4229. 

    56. [56]

      Zou, Y.; Najari, A.; Berrouard, S.; Beaupr, S.; Aich, B. R.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2010, 132, 7595. 

    57. [57]

      Piliego, C.; Holcome, T. W.; Douglas, J. D.; Woo, C. H.; Beaujuge, P. M.; Fréchet, J. M. J. J. Am. Chem. Soc. 2010, 132, 7595. 

    58. [58]

      Su, M. S.; Kuo, C. Y.; Yuan, M. C.; Jeng, U. S.; Su, C. J.; Wei, K. H. Adv. Mater. 2011, 23, 3315. 

    59. [59]

      Gendron, D.; Leclerc, M. Energ. Environ. Sci. 2011, 4, 1225.

    60. [60]

      Chu, T. Y.; Lu, J.; Beaupre, S.; Zhang, Y.; Pouliot, J. R.; Wakim, S.; Zhou, J.; Leclerc, M.; Li, Z.; Ding, J.; Tao, Y. J. Am. Chem. Soc. 2011, 133, 4250. 

    61. [61]

      Guo, X.; Ortiz, R. P.; Zheng, Y.; Hu, Y.; Noh, Y. Y.; Baeg, K. J.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2011, 133, 1405. 

    62. [62]

      Allard, N.; Najari, A.; Pouliot, J.-R.; Pron, A.; Grenier, F.; Leclerc, M. Polym. Chem. 2012, 3, 2875.

    63. [63]

      Berrouard, P.; Dufresne, S.; Pron, A.; Veilleux, J.; Leclerc, M. J. Org. Chem. 2012, 77, 8167. 

    64. [64]

      Berrouard, P.; Najari, A.; Pron, A.; Gendron, D.; Morin, P. O.; Pouliot, J. R.; Veilleux, J.; Leclerc, M. Angew. Chem., Int. Ed. 2012, 51, 2068. 

    65. [65]

      Grenier, F.; Berrouard, P.; Pouliot, J.-R.; Tseng, H.-R.; Heeger, A. J.; Leclerc, M. Polym. Chem. 2013, 4, 1836.

    66. [66]

      Pouliot, J. R.; Mercier, L. G.; Caron, S.; Leclerc, M. Macromol. Chem. Phys. 2013, 214, 453.

    67. [67]

      Wakioka, M.; Ichihara, N.; Kitano, Y.; Ozawa, F. Macromolecules 2014, 47, 626.

    68. [68]

      Iizuka, E.; Wakioka, M.; Ozawa, F. Macromolecules 2015, 48, 2989.

    69. [69]

      Lu, W.; Kuwabara, J.; Iijima, T.; Higashimura, H.; Hayashi, H.; Kanbara, T. Macromolecules 2012, 45, 4128.

    70. [70]

      Wakioka, M.; Kitano, Y.; Ozawa, F. Macromolecule 2013, 46, 370.

    71. [71]

      Lu, W.; Kuwabara, J.; Kanbara, T. Polym. Chem. 2012, 3, 3217.

    72. [72]

      Kuramochi, M.; Kuwabara, J.; Lu, W.; Kanbara, T. Macromolecules 2014, 47, 7378.

    73. [73]

      Lu, W.; Kuwabara, J.; Kuramochi, M.; Kanbara, T. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 1396. 

  • 加载中
    1. [1]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    2. [2]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    5. [5]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    6. [6]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    9. [9]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    10. [10]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    11. [11]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    15. [15]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    18. [18]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    19. [19]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    20. [20]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

Metrics
  • PDF Downloads(0)
  • Abstract views(2030)
  • HTML views(493)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return