Citation: Wu Ruihua, Yang Wen, Cheng Guo, Li Yue, Yang Dingqiao. Progress in Transition Metal-Catalyzed Asymmetric Ring-Opening Reactions of Oxa(Aza)bicyclic Alkenes with Carbanion Nucleophiles[J]. Chinese Journal of Organic Chemistry, ;2016, 36(10): 2368-2379. doi: 10.6023/cjoc201604006 shu

Progress in Transition Metal-Catalyzed Asymmetric Ring-Opening Reactions of Oxa(Aza)bicyclic Alkenes with Carbanion Nucleophiles

  • Corresponding author: Yang Dingqiao, yangdq@scnu.edu.cn
  • Received Date: 3 April 2016
    Revised Date: 17 May 2016

    Fund Project: and the City of Guangzhou Science and Technology Plan Projects No.156300018the Natural Science Foundation of Guangdong Province No.S2013020013091Project supported by the National Natural Science Foundation of China Nos.21172081, 21372090

Figures(5)

  • The recent progress in transition metal-catalyzed asymmetric ring-opening reactions of oxa(aza)bicyclic alkenes with carbanion nucleophiles is reviewed with focus on the influence of the types of transition metal catalysts, carbanion nucleophiles, ligands, the structures of oxa(aza)bicyclic alkenes, solvents and additives on the asymmetric ring-opening reactions. Moreover, the parties of possible mechanisms for the asymmetric ring-opening reactions are also discussed.
  • 加载中
    1. [1]

       

    2. [2]

      Perrone, R.; Berardi, F.; Colabufo, N. A.; Leopoldo, M.; Tortorella, V.; Fiorentini, F.; Olgiati, V.; Ghiglieri, A.; Govonig, S. J. Med. Chem. 1995, 38, 942. 

    3. [3]

      Pineschi, M. New J. Chem. 2004, 28, 657.

    4. [4]

      Kamal, A.; Gayatri, N. L. Tetrahedron Lett. 1996, 37, 3359. 

    5. [5]

      Sobti, A.; Kim, K.; Sulikowski, G. A. J. Org. Chem. 1996, 61, 6. 

    6. [6]

      Johnson, B. M.; Chang, P. T. Anal. Profiles Drug Subst. Excipients 1996, 24, 443. 

    7. [7]

      Murakami, M.; Lgawa, H. Chem. Commun. 2002, 4, 390.

    8. [8]

      Degnan, A. P.; Meyers, A. I. J. Org. Chem. 2000, 65, 3503. 

    9. [9]

      Wu, M.-S.; Jeganmohan, M.; Cheng, C.-H. J. Org. Chem. 2005, 70, 9545.

    10. [10]

      Parthasarathy, K.; Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2006, 8, 621.

    11. [11]

      Alexakis, A.; Hajjaji, S. E.; Polet, D.; Rathgeb, X. Org. Lett. 2007, 9, 3393.

    12. [12]

      Lautens, M.; Fagnou, K.; Hiebert, S. Acc. Chem. Res. 2003, 36, 48. 

    13. [13]

      Lautens, M.; Fagnou, K. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5455. 

    14. [14]

      Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169.

    15. [15]

      Hiebert, S. J. Am. Chem. Soc. 2004, 126, 1437. (b) Li, M.; Yan, X.-X.; Hong, W.; Zhu, X.-Z.; Cao, B.-X.; Sun, J.; Hou, X.-L. Org. Lett. 2004, 6, 2833. 

    16. [16]

      Arrayas, R. G.; Cabrera, S.; Carretero, J. Org. Lett. 2003, 5, 1333. (b) Zhang, W.; Wang, L.-X.; Shi, W.-J.; Zhou, Q.-L. J. Org. Chem. 2005, 70, 3734.

    17. [17]

      Lautens, M.; Dockendorff, C.; Fagnou, K.; Malicki, A. Org. Lett. 2002, 4, 131. (b) Lautens, M.; Dockendorff, C. Org. Lett. 2003, 5, 3695.

    18. [18]

    19. [19]

    20. [20]

    21. [21]

      Imamoto, T.; Sugita, K.; Yoshida, K. J. Am. Chem. Soc. 2005, 127, 11934. 

    22. [22]

      Cabrera, S.; Arrayas, R. G.; Alonso, I.; Carretero,. C. J. Am. Chem. Soc. 2005, 127, 17938. 

    23. [23]

      Zhang, T.-K.; Yuan, K.; Hou, X.-L. J. Org. Chem. 2007, 692, 1912.

    24. [24]

      Imamoto, T.; Saitoh, Y.; Koide, A.; Ogura, T.; Yoshida, K. Angew. Chem., Int. Ed. 2007, 46, 8636. 

    25. [25]

      Endo, K.; Tanaka, K.; Ogawa, M.; Shibata, T. Org. Lett. 2011, 13, 868.

    26. [26]

      Chen, C.-L.; Martin, S. F. J. Organomet. Chem. 2006, 71, 4810

    27. [27]

      Huang, K.-L.; Guo, C.; Cheng, L.-J.; Xie, L.-G.; Zhou, Q.-L.; Xu, X.-H.; Zhu, S.-F. Adv. Synth. Catal. 2013, 355, 2833.

    28. [28]

      Shukla, P.; Sharma, A.; Pallavi, B.; Cheng, C.-H. Tetrahedron 2015, 71, 2260.

    29. [29]

      Tenaglia, A.; Marc, S. J. Org. Chem. 2008, 73, 1397. 

    30. [30]

      Tenaglia, A.; Marc, S.; Giordano, L.; Riggi, I. D. Angew. Chem., Int. Ed. 2011, 50, 9062. 

    31. [31]

      Fan, B.-M.; Li, S.-F.; Chen, H.-L.; Lu, Z.-W.; Liu, S.-S.; Yang, Q.-J.; Yu, L.; Xu, J.-B.; Zhou, Y.-Y.; Wang, J. Adv. Synth. Catal. 2013, 355, 2827. 

    32. [32]

      Mo, D.-L.; Chen, B.; Ding, C.-H.; Dai, L.-X.; Ge, G.-C.; Hou, X.-L. Organometallics 2013, 32, 4465.

    33. [33]

      Liu, S.-S.; Li, S.-F.; Chen, H.-L.; Yang, Q.-J.; Xu, J.-B.; Zhou, Y.-Y.; Yuan, M.-L.; Zeng, W.-M.; Fan, B.-M. Adv. Synth. Catal. 2014, 356, 2960.

    34. [34]

      Mannathana, S.; Cheng, C.-H. Adv. Synth. Catal. 2014, 356, 2239.

    35. [35]

      Zhou, Y.-Y.; Liu, S.-S.; Chen, H.-L.; Chen, J.-C.; Sun, W.-Q.; Li, S.-F.; Yang, Q.-J.; Fan, B.-M. Chin. J. Chem. 2015, 11, 15.

    36. [36]

      Chen, J.-C.; Liu, S.-S.; Zhou, Y.-Y.; Li, S.-F.; Lin, C.-Y.; Bian, Z.-X.; Fan, B.-M. Organometallics 2015, 34, 4318.

    37. [37]

      Menard, F.; Lautens, M. Angew. Chem., Int. Ed. 2008, 47, 2085. 

    38. [38]

      Zhang, T.-K.; Mo, D.-L.; Dai, L.-X.; Hou, X.-L. Org. Lett. 2008, 10, 3689.

    39. [39]

      Machin, B.; Ballantine, M.; Mandel, J.; Blanchard, N.; Tam, W. J. Org. Chem. 2009, 74, 7261. 

    40. [40]

      Huang, X.-J.; Mo, D.-L.; Ding, C.-H.; Hou, X.-L. Synlett 2011, 943.

    41. [41]

      Tsui, G. C.; Tsoung, J.; Dougan, P.; Lautens, M. Org. Lett. 2012, 14, 5542.

    42. [42]

      Pan, X.-J.; Huang, G.-B.; Long, Y.-H.; Zuo, X.-J.; Xu, X.; Gu, F.-L.; Yang, D.-Q. J. Org. Chem. 2014, 45, 187.

    43. [43]

      Zeng, Z.-Y.; Yang, D.-Q.; Long, Y.-H.; Pan, X.-J.; Huang, G.-B.; Zuo, X.-J.; Zhou, W. J. Org. Chem. 2014, 79, 5249. 

    44. [44]

      Edmundsa, M.; Menarda, M. L.; Tam, W. Synth. Commun. 2015, 45, 468.

    45. [45]

      Arrayas, R. G.; Cabrera, S.; Carretero, J. C. Org. Lett. 2005, 7, 219. 

    46. [46]

      Arrayas, R. G.; Cabrera, S.; Carretero, J. C. Synthesis 2006, 1205.

    47. [47]

      Zhu, S.-F.; Yang, Y.; Wang, L.-X.; Liu, B.; Zhou, Q.-L. Org. Lett. 2005, 7, 2333.

    48. [48]

      Zhang, W.; Zhu, S.-F.; Qiao, X.-C.; Zhou, Q.-L. Chem. Asian J. 2008, 3, 2105.

    49. [49]

      Millet, R.; Bernardez, T.; Palais, L.; Alexakis, A. Synthesis 2009, 2101.

    50. [50]

      Yang, D.-Q.; Liang, N. Org. Biomol. Chem. 2014, 10, 1039.

    51. [51]

      Pineschi, M.; Moro, F. D.; Crotti, P.; Macchia, F. Org. Lett. 2005, 7, 3605.

    52. [52]

      Millet, R.; Bernardez, T.; Palais, L.; Alexakis, A. Tetrahedron Lett. 2009, 50, 3474.

    53. [53]

      Wu, M.-S.; Rayabarapu, D. K.; Cheng, C.-H. J. Org. Chem. 2004, 69, 8407.

    54. [54]

      Wu, M.-S.; Jeganmohan, M.; Cheng, C.-H. J. Org. Chem. 2005, 70, 9545.

    55. [55]

      Nájera, C.; Yus, M. Curr. Org. Chem. 2003, 7, 867.

    56. [56]

      Rappoport, Z.; Marek, I. The Chemistry of Organolithium Compounds, John Wiley & Sons Ltd, Chichester, UK, 2004, Chapter 1.

    57. [57]

      Bos, P. H.; Rudolph, A.; Perez, M.; Fananas, M.; Harutyunyan, S. R.; Feringa, B. L. Chem. Commun 2012, 48, 1748. 

    58. [58]

      Sawama, Y.; Sawama, Y.; Krause, N. Org. Lett. 2009, 11, 5034.

    59. [59]

      Sawama, Y.; Kawamoto, K.; Satake, H.; Krause, N.; Kita, Y. Synlett 2010, 2151.

    60. [60]

      Loh, C.; Fang, X.; Peters, B.; Lautens, M. Chem. Eur. J. 2015, 21, 13883. 

    61. [61]

      Zhou, H.; Li, J.; Yang, H.; Xia, C.; Jiang, G. Org. Lett. 2015, 17, 4628.

  • 加载中
    1. [1]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    6. [6]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    12. [12]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    13. [13]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    14. [14]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    17. [17]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

Metrics
  • PDF Downloads(0)
  • Abstract views(1021)
  • HTML views(194)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return