Citation: Cao Liang, Xiong Jinfeng, Wu Yancheng, Ding Sha, Li Mingbing, Xie Fen, Ma Zhihan, Wang Zhaoyang. Progress in the Molecular Design and Synthesis of Organic Fluorescent Probe for Picric Acid Detection[J]. Chinese Journal of Organic Chemistry, ;2016, 36(9): 2053-2074. doi: 10.6023/cjoc201604002 shu

Progress in the Molecular Design and Synthesis of Organic Fluorescent Probe for Picric Acid Detection

  • Corresponding author: Wang Zhaoyang, wangzy@scnu.edu.cn
  • Received Date: 1 April 2016
    Revised Date: 26 April 2016

    Fund Project: the Guangzhou Science and Technology Project Scientific Special 201607010251Project supported by the Natural Science Foundation of Guangdong Province 2014A030313429the Undergraduates Innovation Project of South China Normal University 20161528

Figures(25)

  • Highly selective and sensitive detection of nitro aromatic explosive picric acid (PA) has become a challenging task due to the increasing concerns over national security and environmental awareness. In order to adjust to the trend of green chemistry, more and more attention has been attached to the fluorescent probes among various PA detection techniques, especially the organic molecule fluorescent probes without any metal ion (e.g. Hg2+)-assisted fluorescence enhancement for their easy availability and good processability. According to the molecular composition of the probes, these organic molecule probes can be classified into three categories as polymer, oligomer, and small molecule type. The progress on their molecular design and synthesis is reviewed, and their future trend is also prospected.
  • 加载中
    1. [1]

      Salinas, Y.; Martinez-Manez, R.; Marcos, M. D.; Sancenon, F.; Costero, A. M.; Parra, M.; Gil, S. Chem. Soc. Rev. 2012, 41, 1261.  doi: 10.1039/C1CS15173H

    2. [2]

      Shanmugaraju, S.; Mukherjee, P. S. Chem. Commun. 2015, 51, 16014.  doi: 10.1039/C5CC07513K

    3. [3]

      Germain, M. E.; Knapp, M. J. Chem. Soc. Rev. 2009, 38, 2543.  doi: 10.1039/b809631g

    4. [4]

      Wei, W.; Lu, R.-J.; Tang, S.-Y.; Liu, X.-Y. J. Mater. Chem. A 2015, 3, 4604.  doi: 10.1039/C4TA06828A

    5. [5]

      Sun, X.-C.; Wang, Y.; Lei, Y. Chem. Soc. Rev. 2015, 44, 8019.  doi: 10.1039/C5CS00496A

    6. [6]

      Zyryanov, G. V.; Kopchuk, D. S.; Kovalev, I. S.; Nosova, E. V.; Rusinov, V. L.; Chupakhin, O. N. Russ. Chem. Rev. 2014, 83, 783.  doi: 10.1070/RC2014v083n09ABEH004467

    7. [7]

      Hu, Z.-C.; Deibert, B.-J.; Li, J. Chem. Soc. Rev. 2014, 43, 5815.  doi: 10.1039/C4CS00010B

    8. [8]

      Kartha, K. K.; Sandeep, A.; Praveen, V. K.; Ajayaghosh, A. Chem. Rec. 2015, 15, 252.  doi: 10.1002/tcr.201402063

    9. [9]

      Shanmugaraju, S.; Mukherjee, P. S. Chem. Eur. J. 2015, 21, 6656.  doi: 10.1002/chem.201406092

    10. [10]

      Zhou, Q.; Swager T. M. J. Am. Chem. Soc. 1995, 117, 7017.  doi: 10.1021/ja00131a031

    11. [11]

      Swager, T. M. Acc. Chem. Res. 1998, 31, 201.  doi: 10.1021/ar9600502

    12. [12]

      Yang, J. S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 5321.  doi: 10.1021/ja9742996

    13. [13]

      Yang, J. S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 11864.  doi: 10.1021/ja982293q

    14. [14]

      Ferrand, Y.; Crump, M. P.; Davis, A. P. Science 2007, 318, 619.  doi: 10.1126/science.1148735

    15. [15]

      He, G.; Peng, H.-N.; Liu, T.-H.; Yang, M.-N.; Zhang, Y.; Fang, Y. J. Mater. Chem. 2009, 19, 7347.  doi: 10.1039/b906946a

    16. [16]

      Sohn, H.; Calhoun, R. M.; Sailor, M. J.; Trogler, W. C. Angew. Chem., Int. Ed. 2001, 40, 2104.  doi: 10.1002/1521-3773(20010601)40:11<>1.0.CO;2-Q

    17. [17]

      Sohn, H.; Sailor, M. J.; Magde, D.; Trogler, W. C. J. Am. Chem. Soc. 2003, 125, 3821.  doi: 10.1021/ja021214e

    18. [18]

      Sanchez, J. C.; DiPasquale, A. G.; Rheingold, A. L.; Trogler, W. C. Chem. Mater. 2007, 19, 6459.  doi: 10.1021/cm702299g

    19. [19]

      Toal, S. J.; Sanchez, J. C.; Dugan, R. E.; Trogler, W. C. J. Forensic. Sci. 2007, 52, 79.  doi: 10.1111/jfo.2007.52.issue-1

    20. [20]

      Sanchez, J. C.; Urbas, S. A.; Toal, S. J.; DiPasquale, A. G.; Rheingold, A. L.; Trogler, W. C. Macromolecules 2008, 41, 1237.  doi: 10.1021/ma702274c

    21. [21]

      Sanchez, J. C.; Trogler, W. C. J. Mater. Chem. 2008, 18, 3143.  doi: 10.1039/b802623h

    22. [22]

      Martinez, H. P.; Grant, C. D.; Reynolds, J. G.; Trogler, W. C. J. Mater. Chem. 2012, 22, 2908.  doi: 10.1039/C2JM15214B

    23. [23]

      Dedeoglu, B.; Monari, A.; Etienne, T.; Aviyente, V.; Ozen, A. S. J. Phys. Chem. C 2014, 118, 23946.  doi: 10.1021/jp505025t

    24. [24]

      Luo, J.-D.; Xie, Z.-L.; Lam, J. W. Y.; Cheng, L.; Chen, H.-Y.; Qiu, C.-F.; Kwok, H. S.; Zhan, X.-W.; Liu, Y.-Q.; Zhu, D.-B.; Tang, B.-Z. Chem. Commun. 2001, 1740.

    25. [25]

      Liu, J.-Z.; Zhong, Y.-C.; Lu, P.; Hong, Y.-N.; Lam, J. W. Y.; Faisal, M; Yu, Y.; Wong, K. S.; Tang, B.-Z. Polym. Chem. 2010, 1, 426.  doi: 10.1039/c0py00046a

    26. [26]

      Zhao, Z.-J.; Jiang, T.; Guo, Y.-J.; Ding, L.-Y.; He, B.-R.; Chang, Z.-F.; Lam, J. W. Y. Liu, J.-Z.; Chan, C. Y. K.; Lu, P. J. Polym. Sci. Part A:Polym. Chem. 2012, 50, 2265.  doi: 10.1002/pola.v50.11

    27. [27]

      Liu, J.-Z.; Zhong, Y.-C.; Lam, J. W. Y.; Lu, P.; Hong, Y.-N.; Yu, Y.; Yue, Y.-N.; Faisal, M.; Sung, H. H. Y.; Williams, I. D.; Wong K. S.; Tang, B.-Z. Macromolecules 2010, 43, 4921.  doi: 10.1021/ma902432m

    28. [28]

      Shu, W.-F.; Guan, C.-W.; Guo, W.-H.; Wang, C.-Y.; Shen, Y.-J. J. Mater. Chem. 2012, 22, 3075.  doi: 10.1039/c1jm15535k

    29. [29]

      Zhang, L.-H.; Jian, T.; Wu, L.-B.; Wan, J.-H.; Chen, C.-H.; Pei, Y.-B.; Lu, H.; Deng, Y.; Bian, G.-F.; Qiu, H.-Y.; Lai, G-Q. Chem. Asian J. 2012, 7, 1583.  doi: 10.1002/asia.201200070

    30. [30]

      Qu, H.-M.; Jiang, L.-L.; Chen, T.; Tang, J.-K. Chin. J. Org. Chem. 2014, 34, 1061(in Chinese).  doi: 10.6023/cjoc201312008
       

    31. [31]

      Das, S.; Chatterjee, D. P.; Samanta, S.; Nandi, A. K. RSC Adv. 2013, 3, 17540.  doi: 10.1039/c3ra42479k

    32. [32]

      Das, S.; Chatterjee, D. P.; Nandi, A. K. Polym Int. 2014, 63, 2091.  doi: 10.1002/pi.2014.63.issue-12

    33. [33]

      Laurenti, M.; Lopez-Cabarcos, E.; Garcia-Blanco, F.; Frick, B.; Rubio-Retama, J. Langmuir 2009, 25, 9579.  doi: 10.1021/la900864a

    34. [34]

      Long, Y.-Y.; Chen, H.-B.; Wang, H.-M.; Peng, Z.; Yang, Y.-F.; Zhang, G.-Q.; Li, N.; Liu, F.; Pei, J. Anal. Chim. Acta 2012, 744, 82.  doi: 10.1016/j.aca.2012.07.028

    35. [35]

      Shaligram, S.; Wadgaonkar, P. P.; Kharul, U. K. J. Mater. Chem. A 2014, 2, 13983.  doi: 10.1039/C4TA02766C

    36. [36]

      Zhang, W.; Qiu, L.-G.; Yuan, Y.-P.; Xie, A.-J.; Shen, Y.-H.; Zhu, J.-F. J. Hazard. Mater. 2012, 221, 147.
       

    37. [37]

      Liu, F.; Zhang, L.-J.; Xiao, J.-H; Hu, J.; Liu, H.-L. Front. Mater. Sci. China 2010, 4, 158.  doi: 10.1007/s11706-010-0018-z

    38. [38]

      Sun, L.-B.; Liang, Z.-Q.; Yu, J.-H.; Xu, R.-R. Polym. Chem. 2013, 4, 1932.  doi: 10.1039/c2py21034g

    39. [39]

      Del Rosso, P. G; Romagnoli, M. J.; Almassio, M. F.; Barbero, C. A.; Garay, R. O. Sens. Actuators, B 2014, 203, 612.  doi: 10.1016/j.snb.2014.07.032

    40. [40]

      Hussain, S.; Malik, A. H.; Afroz, M. A.; Iyer, P. K. Chem. Commun. 2015, 51, 7207.  doi: 10.1039/C5CC02194D

    41. [41]

      Zhang, L.-Z.; Zhao, C.-C.; Zhou, J.-P.; Kondo, T. J. Mater. Chem. C 2013, 1, 5756.  doi: 10.1039/c3tc30689e

    42. [42]

      Zhou, H.; Li, J.-S.; Chua, M.-H.; Yan, H.; Tang, B.-Z.; Xu, J.-W. Polym. Chem. 2014, 5, 5628.  doi: 10.1039/C4PY00518J

    43. [43]

      Zhang, Y.-R.; Chen, G.; Lin, Y.-L.; Zhao, L.-F.; Yuan, W.-Z.; Lu, P.; Jim, C. K. W; Zhang, Y.-M.; Tang, B.-Z. Polym. Chem. 2015, 6, 97.  doi: 10.1039/C4PY01164C

    44. [44]

      Yuan, W.-Z.; Zhao, H.; Shen, X.-Y.; Mahtab, F.; Lam, J. W. Y; Sun, J.-Z.; Tang, B.-Z. Macromolecules 2009, 42, 9400.  doi: 10.1021/ma9012169

    45. [45]

      Lu, P.; Lam, J. W. Y.; Liu, J.-Z.; Jim, C. K. W.; Yuan, W.-Z.; Chan, C. Y. K.; Xie, N.; Hu, Q.; Cheuk, K. K. L.; Tang, B.-Z. Macromolecules 2011, 44, 5977.  doi: 10.1021/ma201203w

    46. [46]

      Hu, R. R.; Lam, J. W. Y.; Liu, J.-Z.; Sung, H. H. Y.; Williams, I. D.; Yue, Z. N.; Wong, K. S.; Yuen, M. M. F.; Tang, B. Z. Polym. Chem. 2012, 3, 1481.  doi: 10.1039/c2py20057k

    47. [47]

      Li, J.; Liu, J.-Z.; Lam, J. W. Y.; Tang, B.-Z. RSC Adv. 2013, 3, 8193.  doi: 10.1039/c3ra40867a

    48. [48]

      Liu, Y.-J.; Gao, M.; Lam, J. W. Y.; Hu, R.-R.; Tang, B.-Z. Macromolecules 2014, 47, 4908.  doi: 10.1021/ma501477w

    49. [49]

      Xu, B.-W.; Wu, X.-F.; Li, H.-B.; Tong, H.; Wang, L.-X. Macromolecules 2011, 44, 5089.  doi: 10.1021/ma201003f

    50. [50]

      Ghosh, K. R.; Saha, S. K.; Wang, Z.-Y. Polym. Chem. 2014, 5, 5638.  doi: 10.1039/C4PY00673A

    51. [51]

      Hu, X.-M.; Chen, Q.; Zhou, D.; Cao, J.; He, Y.-J.; Han, B.-H. Polym. Chem. 2011, 2, 1124.  doi: 10.1039/c1py00012h

    52. [52]

      Toal, S. J.; Trogler, W. C. J. Mater. Chem. 2006, 16, 2871.  doi: 10.1039/b517953j

    53. [53]

      Swager, T. M. Acc. Chem. Res. 2008, 41, 1181.  doi: 10.1021/ar800107v

    54. [54]

      Tournebize, A.; Wong-Wah-Chung, P.; Therias, S.; Bussiere, P. O.; Rivaton, A.; Caron, T.; Serein-Spirau, F.; Lere-Porte, J. P.; Montmeat, P.; Gardette, J. L. Polym. Degrad. Stab. 2012, 97, 1355.  doi: 10.1016/j.polymdegradstab.2012.05.026

    55. [55]

      Hong, G.-H.; Sun, J.-B.; Qian, C.; Xue, P.-C.; Gong, P.; Zhang, Z.-Q.; Lu, R. J. Mater. Chem. C 2015, 3, 2371.  doi: 10.1039/C4TC02782E

    56. [56]

      Liu, T.-H.; Ding, L.-P.; He, G.; Yang, Y.; Wang, W.-L.; Fang, Y. ACS Appl. Mater. Interfaces 2011, 3, 1245.  doi: 10.1021/am2000592

    57. [57]

      Costa, A. I.; Prata, J. V. Sens. Actuators B 2012, 161, 251.  doi: 10.1016/j.snb.2011.10.027

    58. [58]

      Sam-ang, P.; Raksasorn, D.; Sukwattanasinitt, M.; Rashatasakhon, P. RSC Adv. 2014, 4, 58077.  doi: 10.1039/C4RA11407H

    59. [59]

      El-Sayed, M. Y.; Refat, M. S. Int. J. Electrochem. Sci. 2014, 9, 6608.

    60. [60]

      El-Sayed, M. Y.; Refat, M. S. Spectrochim. Acta, Part A 2015, 137, 1270.  doi: 10.1016/j.saa.2014.09.032

    61. [61]

      Zhang, F.; Luo, L.; Sun, Y.; Miao, F.-J.; Bi, J.-H.; Tan, S.-L.; Tian, D.-M.; Li, H.-B. Tetrahedron 2013, 69, 9886.  doi: 10.1016/j.tet.2013.08.083

    62. [62]

      Bandela, A. K.; Bandaru, S.; Rao, C. P. Chem. Eur. J. 2015, 21, 13364.  doi: 10.1002/chem.201500787

    63. [63]

      Boonkitpatarakul, K.; Yodta, Y.; Niamnont, N.; Sukwattanasinitt, M. RSC Adv. 2015, 5, 33306.  doi: 10.1039/C5RA02758F

    64. [64]

      Wang, J.; Mei, J.; Yuan, W.-Z.; Lu, P.; Qin, A.-J.; Sun, J.-Z.; Ma, Y.-G.; Tang, B.-Z. J. Mater. Chem. 2011, 21, 4056.  doi: 10.1039/c0jm04100a

    65. [65]

      Feng, H.-T.; Zheng, Y.-S. Chem. Eur. J. 2014, 20, 195.  doi: 10.1002/chem.201302638

    66. [66]

      Yan, X.-Z.; Wang, H.-Z.; Hauke, C. E.; Cook, T. R.; Wang, M.; Saha, M. L.; Zhou, Z.-X.; Zhang, M.-M.; Li, X.-P.; Huang, F.-H.; Stang, P. J. J. Am. Chem. Soc. 2015, 137, 15276.  doi: 10.1021/jacs.5b10130

    67. [67]

      Pramanik, S.; Bhalla, V.; Kumar, M. Anal. Chim. Acta 2013, 793, 99.  doi: 10.1016/j.aca.2013.07.023

    68. [68]

      Bhalla, V.; Kaur, S.; Vij, V.; Kumar, M. Inorg. Chem. 2013, 52, 4860.  doi: 10.1021/ic3023997

    69. [69]

      Bhalla, V; Pramanik, S.; Kumar, M. Chem. Commun. 2013, 49, 895.  doi: 10.1039/C2CC36872B

    70. [70]

      Chopra, R.; Bhalla, V.; Kumar, M.; Kaur, S. RSC Adv. 2015, 5, 24336.  doi: 10.1039/C5RA00436E

    71. [71]

      Vij, V.; Bhalla, V.; Kumar, M. ACS Appl. Mater. Interfaces 2013, 5, 5373.  doi: 10.1021/am401414g

    72. [72]

      Kumar, M.; Vij, V.; Bhalla, V. Langmuir 2012, 28, 12417.  doi: 10.1021/la302309z

    73. [73]

      Kaur, S.; Bhalla, V.; Vij, V.; Kumar, M. J. Mater. Chem. C 2014, 2, 3936.  doi: 10.1039/c3tc32516d

    74. [74]

      Xie, H.-L.; Wang, H.; Xu, Z.; Qiao, R.-J.; Wang, X.-F.; Wang, X.-M.; Wu, L.-F.; Lu, H.-F.; Feng, S.-Y. J. Mater. Chem. C 2014, 2, 9425.  doi: 10.1039/C4TC01183J

    75. [75]

      Venkatramaiah, N.; Kumar, S.; Patil, S. Chem. Commun. 2012, 48, 5007.  doi: 10.1039/c2cc31606d

    76. [76]

      Venkatramaiah, N.; Kumar, S.; Patil, S. Chem. Eur. J. 2012, 18, 14745.  doi: 10.1002/chem.201201764

    77. [77]

      Kumar, S.; Venkatramaiah, N.; Patil, S. J. Phys. Chem. C 2013, 117, 7236.

    78. [78]

      Li, X.-G.; Liao, Y.-Z.; Huang, M.-R.; Strong, V.; Kaner, R. B. Chem. Sci. 2013, 4, 1970.  doi: 10.1039/c3sc22107e

    79. [79]

      Liao, Y.-Z.; Strong, V.; Wang, Y.; Li, X.-G.; Wang, X.; Kaner, R. B. Adv. Funct. Mater. 2012, 22, 726.  doi: 10.1002/adfm.201102013

    80. [80]

      Bhalla, V.; Singh, H.; Kumar, M.; Prasad, S. K. Langmuir 2011, 27, 15275.  doi: 10.1021/la203774p

    81. [81]

      Bhalla, V; Arora, H; Singh, H; Kumar, M. Dalton Trans. 2013, 42, 969.  doi: 10.1039/C2DT31459B

    82. [82]

      Arora, H.; Bhalla, V.; Kumar, M. RSC Adv. 2015, 5, 32637.  doi: 10.1039/C5RA04337A

    83. [83]

      Bhalla, V.; Gupta, A.; Kumar, M. Org. Lett. 2012, 14, 3112.  doi: 10.1021/ol301202v

    84. [84]

      Bhalla, V.; Gupta, A.; Kumar, M.; Rao, D. S. S.; Prasad, S. K. ACS Appl. Mater. Interfaces 2013, 5, 672.  doi: 10.1021/am302132h

    85. [85]

      Andrew, T. L.; Swager, T. M. J. Am. Chem. Soc. 2007, 129, 7254.  doi: 10.1021/ja071911c

    86. [86]

      Germain, M. E.; Knapp, M. J. J. Am. Chem. Soc. 2008, 130, 5422.  doi: 10.1021/ja800403k

    87. [87]

      Lv, X.-J.; Qi, L.; Gao, X.-Y.; Wang, H.; Huo, Y.; Zhang, Z.-Q. Talanta 2016, 150, 319.  doi: 10.1016/j.talanta.2015.12.053

    88. [88]

      Prasad, K. D.; Row, T. N. G. RSC Adv. 2014, 4, 45306.  doi: 10.1039/C4RA06286H

    89. [89]

      Yang, H.-X.; Xiang, K.; Li, Y.-M.; Li, S.-H.; Xu, C.-H. J. Organomet. Chem. 2016, 801, 96.  doi: 10.1016/j.jorganchem.2015.10.017

    90. [90]

      Pati, P. B.; Zade, S. S. Tetrahedron Lett. 2014, 55, 5290.  doi: 10.1016/j.tetlet.2014.07.098

    91. [91]

      Li, W.-F.; Ma, H.-C.; Lei, Z.-Q. RSC Adv. 2014, 4, 39351.  doi: 10.1039/C4RA05843G

    92. [92]

      Chowdhury, A.; Mukherjee, P. S. J. Org. Chem. 2015, 80, 4064.  doi: 10.1021/acs.joc.5b00348

    93. [93]

      Acharyya, K.; Mukherjee, P. S. Chem. Commun. 2014, 50, 15788.  doi: 10.1039/C4CC06225F

    94. [94]

      Vishnoi, P.; Sen, S.; Patwari, G. N.; Murugavel, R. New J. Chem. 2015, 39, 886.  doi: 10.1039/C4NJ01093K

    95. [95]

      Roy, B.; Bar, A.-K.; Gole, B.; Mukherjee, P.-S. J. Org. Chem. 2013, 78, 1306.  doi: 10.1021/jo302585a

    96. [96]

      Kumar, R.; Sandhu, S.; Singh, P.; Hundal, G.; Hundal, M. S.; Kumar, S. Asian J. Org. Chem. 2014, 3, 805.  doi: 10.1002/ajoc.v3.7

    97. [97]

      Shanmugaraju, S.; Joshi, S. A.; Mukherjee, P. S. J. Mater. Chem. 2011, 21, 9130.  doi: 10.1039/c1jm10406c

    98. [98]

      Gole, B.; Shanmugaraju, S.; Bar, A. K.; Mukherjee, P. S. Chem. Commun. 2011, 47, 10046.  doi: 10.1039/c1cc13925h

    99. [99]

      Santra, D. C.; Bera, M. K.; Sukul, P. K.; Malik, S. Chem. Eur. J. 2016, 22, 2012.  doi: 10.1002/chem.201504126

    100. [100]

      Peng, Y.; Zhang, A.-J.; Dong, M.; Wang, Y.-W. Chem. Commun. 2011, 47, 4505.  doi: 10.1039/c1cc10400d

    101. [101]

      Udhayakumari, D.; Velmathi, S.; Venkatesan, P.; Wu, S.-P. J. Lumin. 2015, 161, 411.  doi: 10.1016/j.jlumin.2015.01.052

    102. [102]

      Pandith, A.; Kumar, A.; Lee, J. Y.; Kim, H. S. Tetrahedron Lett. 2015, 56, 7094.  doi: 10.1016/j.tetlet.2015.11.017

    103. [103]

      Figueira-Duarte, TM.; Mullen, K. Chem. Rev. 2011, 111, 7260.  doi: 10.1021/cr100428a

    104. [104]

      Mosca, L.; Behzad, S. K.; Anzenbacher, P. J. Am. Chem. Soc. 2015, 137, 7967.  doi: 10.1021/jacs.5b04643

    105. [105]

      Venkatramaiah, N.; Firmino, A. D. G.; Paz, F. A. A.; Tome, J. P. C. Chem. Commun. 2014, 50, 9683.  doi: 10.1039/C4CC03980G

    106. [106]

      Gole, B.; Song, W. T.; Lackinger, M.; Mukherjee, P. S. Chem. Eur. J. 2014, 20, 13662.  doi: 10.1002/chem.v20.42

    107. [107]

      Chopra, R.; Kaur, P.; Singh, K. Anal. Chim. Acta 2015, 864, 55.  doi: 10.1016/j.aca.2015.01.029

    108. [108]

      Udhayakumari, D.; Velmathi, S.; Venkatesan, P.; Wu, S.-P. Anal. Methods 2015, 7, 1161.  doi: 10.1039/C4AY02529F

    109. [109]

      Ding, L.-P.; Bai, Y.-M.; Cao, Y.; Ren, G.-J.; Blanchard, G. J.; Fang, Y. Langmuir 2014, 30, 7645.  doi: 10.1021/la5011264

    110. [110]

      Liu, K.; Liu, T.-H.; Chen, X.-L.; Sun, X.-H.; Fang, Y. ACS Appl. Mater. Interfaces 2013, 5, 9830.  doi: 10.1021/am4030774

    111. [111]

      Liu, T.-H.; Ding, L.-P.; Zhao, K.-R.; Wang, W.-L.; Fang, Y., J. Mater. Chem. 2012, 22, 1069.  doi: 10.1039/C1JM14022A

    112. [112]

      Ding, L.-P.; Liu, Y.; Cao, Y.; Wang, L.-L.; Xin, Y.-H.; Fang, Y. J. Mater. Chem. 2012, 22, 11574.  doi: 10.1039/c2jm30697b

    113. [113]

      Xu, Y.-Q.; Li, B.-H.; Li, W.-W.; Zhao, J.; Sun, S.-G.; Pang, Y. Chem. Commun. 2013, 49, 4764.  doi: 10.1039/c3cc41994k

    114. [114]

      Tian, X.; Qi, X.-J.; Liu, X.-Y.; Zhang, Q.-H.; Sens. Actuators, B 2016, 229, 520.  doi: 10.1016/j.snb.2016.02.016

    115. [115]

      He, X.-M.; Zhang, P.; Lin, J.-B.; Huynh, H. V.; Munoz, S. E. N.; Ling, C.-C.; Baumgartner, T. Org. Lett. 2013, 15, 5322.  doi: 10.1021/ol402582p

    116. [116]

      Ma, Q.-Y.; Guan, R.-F.; Li, G.-Z; Feng, S-Y. Chin. J. Org. Chem. 2011, 31, 1395(in Chinese).
      (马庆宇, 关瑞芳, 李国忠, 冯圣玉.有机化学, 2011, 31, 1395.)
      (b) Li, S.-S.; Leng, T.-H.; Zhong, H.-B.; Wang, C.-Y.; Shen, Y.-J. J. Heterocycl. Chem. 2012, 49, 64.

    117. [117]

      Zhao, Y.-F.; Hao, W.-L.; Ma, W.-J.; Zang, Z.-Z.; Zhang, H.-R.; Liu, X.-X.; Zou, S.-F.; Zhang, H.-X.; Liu, W.-C.; Gao, J.-H. New J. Chem. 2014, 38, 5754.  doi: 10.1039/C4NJ00913D

    118. [118]

      An, Z.-F.; Zheng, C.; Chen, R.-F.; Yin, J.; Xiao, J.-J.; Shi, H.-F.; Tao, Y.; Qian, Y.; Huang, W. Chem. Eur. J. 2012, 18, 15655.  doi: 10.1002/chem.201202337

    119. [119]

      Dey, N.; Samanta, S. K.; Bhattacharya, S. ACS Appl. Mater. Interfaces 2013, 5, 8394.  doi: 10.1021/am401608q

    120. [120]

      Wu, Y.-C.; You, J.-Y.; Guan, L.-T.; Shi, J.; Cao, L.; Wang, Z.-Y. Chin. J. Org. Chem. 2015, 35, 2465(in Chinese).  doi: 10.6023/cjoc201507022
       

    121. [121]

      Xiong, J.-F.; Luo, S.-H.; Huo, J.-P.; Liu, J.-Y.; Chen, S.-X.; Wang, Z.-Y. J. Org. Chem. 2014, 79, 11619.  doi: 10.1021/jo502281b

    122. [122]

      Sandhu, S.; Kumar, R.; Singh, P.; Mahajan, A.; Kaur, M.; Kumar, S. ACS Appl. Mater. Interfaces 2015, 7, 10491.  doi: 10.1021/acsami.5b01970

    123. [123]

      Hu, Y.-J.; Tan, S.-Z.; Shen, G.-L.; Yu, R.-Q. Anal. Chim. Acta 2006, 570, 170.  doi: 10.1016/j.aca.2006.04.026

    124. [124]

      Venkatesan, N.; Singh, V.; Rajakumar, P.; Mishra, A. K. RSC Adv. 2014, 4, 53484.  doi: 10.1039/C4RA06320A

    125. [125]

      Madhu, S.; Bandela, A.; Ravikanth, M. RSC Adv. 2014, 4, 7120.  doi: 10.1039/c3ra46565a

    126. [126]

      Ma, Y.-X.; Li, H.; Peng, S.; Wang, L.-Y. Anal. Chem. 2012, 84, 8415.  doi: 10.1021/ac302138c

    127. [127]

      Dubey, A.; Mishra, A.; Min, J. W.; Lee, M. H.; Kim, H.; Stang, P. J.; Chi, K. W. Inorg. Chim. Acta 2014, 423, 326.  doi: 10.1016/j.ica.2014.08.037

    128. [128]

      Bereau, V.; Duhayon, C.; Sutter, J. P. Chem. Commun. 2014, 50, 12061.  doi: 10.1039/C4CC05888G

    129. [129]

      Swamy, P. C. A; Thilagar, P. Chem. Eur. J. 2015, 21, 8874.  doi: 10.1002/chem.201500727

    130. [130]

      Kumar, M.; Reja, S. I.; Bhalla, V. Org. Lett. 2012, 14, 6084.  doi: 10.1021/ol3029753

    131. [131]

      Zhang, J.-R.; Yue, Y.-Y.; Luo, H.-Q.; Li, N.-B. Analyst 2016, 141, 1091.  doi: 10.1039/C5AN02251G

    132. [132]

      Thomas, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339.  doi: 10.1021/cr0501339

    133. [133]

      Gu, C.; Huang, N.; Wu, Y.; Xu, H.; Jiang, D.-L. Angew. Chem., Int. Ed. 2015, 54, 11540.  doi: 10.1002/anie.201504786

    134. [134]

      Sun, X.-C.; Liu, Y.-X.; Shaw, G.; Carrier, A.; Dey, S.; Zhao, J.; Lei, Y. ACS Appl. Mater. Interfaces 2015, 7, 13189.  doi: 10.1021/acsami.5b03655

    135. [135]

      Malik, A. H.; Hussain, S.; Kalita, A.; Iyer, P. K. ACS Appl. Mater. Interfaces 2015, 7, 26968.  doi: 10.1021/acsami.5b08068

    136. [136]

      Liang, Z.-C.; Chen, H.; Wang, X.-H.; Sun, R.-C. Dyes Pigm. 2016, 125, 367.  doi: 10.1016/j.dyepig.2015.10.045

    137. [137]

      Wang, D.-H.; Cui, Y.-Z.; Tao, F.-R.; Niu, Q.-F.; Li, T.-D.; Xu, H. Sens. Actuators, B 2016, 225, 319.  doi: 10.1016/j.snb.2015.11.038

    138. [138]

      Sun, X.-C.; Ma, X.-Y.; Kumar, C. V.; Lei, Y. Anal. Methods 2014, 6, 8464.  doi: 10.1039/C4AY01941E

    139. [139]

      Pinrat, O.; Boonkitpatarakul, K.; Paisuwan, W.; Sukwattanasinitt, M.; Ajavakom, A. Analyst 2015, 140, 1886.  doi: 10.1039/C4AN01843E

    140. [140]

      Chakravarty, S.; Gogoi, B.; Sen Sarma, N. J. Lumin. 2015, 165, 6.  doi: 10.1016/j.jlumin.2015.04.006

    141. [141]

      Gogoi, B.; Sen Sarma, N. ACS Appl. Mater. Interfaces 2015, 7, 11195.  doi: 10.1021/acsami.5b01102

    142. [142]

      Kabessa, Y.; Eyal, O.; Bar-On, O.; Korouma, V.; Yagur-Kroll, S.; Belkin, S.; Agranat, A. J. Biosens. Bioelectron. 2016, 79, 784.  doi: 10.1016/j.bios.2016.01.011

  • 加载中
    1. [1]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    5. [5]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    6. [6]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    7. [7]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    8. [8]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    9. [9]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    10. [10]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    11. [11]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    12. [12]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    13. [13]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    14. [14]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    15. [15]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    16. [16]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    17. [17]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(0)
  • Abstract views(1484)
  • HTML views(425)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return