Citation: Hou Fangzhan, Mei Chong-Yu, Liang Long, Wang Hongyu, Xie Guanghui, Lu Zhengquan, Li Jingjing, Li Wei-Shi. Benzodithiophene-Cored Small Optoelectronic Molecules: Influence of Extension Direction of Conjugated Segments[J]. Chinese Journal of Organic Chemistry, ;2016, 36(7): 1586-1595. doi: 10.6023/cjoc201603039 shu

Benzodithiophene-Cored Small Optoelectronic Molecules: Influence of Extension Direction of Conjugated Segments

  • Corresponding author: Mei Chong-Yu, meichongyu@sina.com Wang Hongyu, wanghy@shu.edu.cn Li Wei-Shi, liws@mail.sioc.ac.cn
  • Received Date: 24 March 2016
    Revised Date: 23 April 2016

    Fund Project: the National Natural Science Foundation of China No. 21474129the International Science and Technology Cooperation Program of China No. 2015DFG62680the Science and Technology Commission of Shanghai Municipality No. 13JC1407000

Figures(6)

  • Conjugated extension of an organic optoelectronic moiety along different directions is of significance for exploring its usage in material design and understanding its structure-property relationships. In this work, three benzo[1,2-b:4,5-b']di- thiophene-cored molecules were designed and synthesized by attaching donor-acceptor conjugated arms composed of thiophene and benzothiadiazole via the direction of its 2,6-position (horizontal), 4,8-position (vertical), and the both (cross), respectively. Compared with vertical linkage, the horizontal modification benefits the achievement of a red-shifted and wider absorption spectrum, a narrow bandgap and a more regular crystalline property, but a higher highest occupied molecular orbital (HOMO) energy level. Cross-shaped compound exhibits both a wide absorption spectrum and large absorption coefficients, and thus gave the largest short-circuit current density for its solar cell among three so-prepared devices.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

       

    4. [4]

    5. [5]

      Huo, L.; Hou, J. Polym. Chem. 2011, 2, 2453. (b) Ye, L.; Zhang, S.; Huo, L.; Zhang, M.; Hou, J. Acc. Chem. Res. 2014, 47, 1595.

    6. [6]

      Hou, J.; Park, M.-H.; Zhang, S.; Yao, Y.; Chen, L.-W.; Li, J.-H.; Yang, Y. Macromolecules 2008, 41, 6012. (b) Liang, Y.; Wu, Y.; Feng, D.; Tsai, S.-T.; Son, H.-J.; Li, G.; Yu, L. J. Am. Chem. Soc. 2009, 131, 56. (c) Hou, J.; Chen, H.-Y.; Zhang, S.; Chen, R. I.; Yang, Y.; Wu, Y.; Li, G. J. Am. Chem. Soc. 2009, 131, 15586. (d) Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.-T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. Adv. Mater. 2010, 22, E135. (e) Piliego, C.; Holcombe, T. W.; Douglas, J. D.; Woo, C. H.; Beaujuge, P. M.; Fréchet, J. M. J. J. Am. Chem. Soc. 2010, 132, 7595. (f) Wang, X.; Jiang, P.; Chen, Y.; Luo, H.; Zhang, Z.; Wang, H.; Li, X.; Yu, G.; Li, Y. Macromolecules 2013, 46, 4805. (g) Mei, C.-Y.; Liang, L.; Zhao, F.-G.; Wang, J.-T.; Yu, L.-F.; Li, Y.-X.; Li, W.-S. Macromolecules 2013, 46, 7920. (h) Lee, J.; Jo, S. B.; Kim, M.; Kim, H. G.; Shin, J.; Kim, H.; Cho, K. Adv. Mater. 2014, 26, 6706.

    7. [7]

      Zhou, J.; Wan, X.; Liu, Y.; Zuo, Y.; Li, Z.; He, G.; Long, G.; Ni, W.; Li, C.; Su, X. C.; Chen, Y. J. Am. Chem. Soc. 2012, 134, 16345. (b) Zhou, J.; Zuo, Y.; Wan, X.; Long, G.; Zhang, Q.; Ni, W.; Liu, Y.; Li, Z.; He, G.; Li, C.; Kan, B.; Li, M.; Chen, Y. J. Am. Chem. Soc. 2013, 135, 8484. (c) Liang, L.; Wang, J.-T.; Xiang, X.; Ling, J; Zhao, F.-G.; Li, W.-S. J. Mater. Chem. A 2014, 2, 15396. 

    8. [8]

      Shao, W.; Liang, L.; Xiang, X.; Li, H.-J.; Zhao, F.-G. Li, W.-S. Chin. J. Chem. 2015, 33, 847. (b) Xiang, X.; Shao, W.; Liang, L.; Chen, X.-Q.; Zhao, F.-G.; Lu, Z.; Wang, W.; Li, J.; Li, W.-S. RSC Adv. 2016, 6, 23300.

    9. [9]

      Price, S. C.; Stuart, A. C.; You, W. Macromolecules 2010, 43, 4609. (b) Zhou, H.; Yang, L.; Stuart, A. C.; Price, S. C.; Liu, S.; You, W. Angew. Chem., Int. Ed. 2011, 50, 2995. 

    10. [10]

      Lee, D.; Stone, S. W.; Ferraris, J. P. Chem. Commun. 2011, 47, 10987. (b) Lee, D.; Hubijar, E.; Kalaw, G. J. D.; Ferraris, J. P. Chem. Mater. 2012, 24, 2534. (c) Li, K.; Li, Z.; Feng, K.; Xu, X.; Wang, L.; Peng, Q. J. Am. Chem. Soc. 2013, 135, 13549. 

    11. [11]

      Huo, L.; Hou, J.; Zhang, S.; Chen, H.-Y.; Yang, Y. Angew. Chem., Int. Ed. 2010, 49, 1500. (b) Huo, L.; Zhang, S.; Guo, X.; Xu, F.; Li, Y.; Hou, J. Angew. Chem., Int. Ed. 2011, 50, 9697. (c) Liao, S.-H.; Jhuo, H.-J.; Cheng, Y.-S.; Chen, S.-A. Adv. Mater. 2013, 25, 4766. (d) Ye, L.; Zhang, S.; Zhao, W.; Yao, H.; Hou, J. Chem. Mater. 2014, 26, 3603. (e) Zhang, S.; Ye, L.; Zhao, W.; Yang, B.; Wang, Q.; Hou, J. Sci. Chin. Chem. 2015, 58, 248. 

    12. [12]

      Dou, L.; Gao, J.; Richard, E.; You, J.; Chen, C.-C.; Cha, K. C.; He, Y.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2012, 134, 10071. (b) Zhang, M.; Gu, Y.; Guo, X.; Liu, F.; Zhang, S.; Huo, L.; Russell, T. P.; Hou, J. Adv. Mater. 2013, 25, 4944. (c) Zhang, M.; Guo, X.; Ma, W.; Zhang, S.; Huo, L.; Ade, H.; Hou, J. Adv. Mater. 2014, 26, 2089. 

    13. [13]

      Zhang, S.; Ye, L.; Zhao, W.; Liu, D.; Yao, H.; Hou, J. Macromolecules 2014, 47, 4653. (b) Tamilavan, V.; Park, J. B.; Kang, I. N.; Hwang, D. H.; Hyun, M. H. Synth. Met. 2014, 198, 230. (c) Huang, P.; Du, J.; Gunathilake, S. S.; Rainbolt, E. A.; Murphy, J. W.; Black, K. T.; Biewer, M. C. J. Mater. Chem. A 2015, 3, 6980.

    14. [14]

      Kranthiraja, K.; Gunasekar, K.; Cho, W.; Park, Y. G.; Lee, J. Y.; Shin, Y.; Jin, S. H. J. Mater. Chem. C 2015, 3, 796. (b) Jiang, J.-M.; Raghunath, P.; Lin, H.-K.; Lin, Y.-C.; Lin, M. C.; Wei, K.-H. Macromolecules 2014, 47, 7070. 

    15. [15]

      Kim, J.-H.; Song, C. E.; Kim, B.; Kang, I. N.; Shin, W. S.; Hwang, D.-H. Chem. Mater. 2014, 26, 1234. (b) Kan, B.; Zhang, Q.; Liu, F.; Wan, X.; Wang, Y.; Ni, W.; Yang, X.; Zhang, M.; Zhang, H.; Russell, T. P.; Chen, Y. Chem. Mater. 2015, 27, 8414.

    16. [16]

      Wang, J.; Xiao, M.; Chen, W.; Qiu, M.; Du, Z.; Zhu, W.; Wen, S.; Wang, N.; Yang, R. Macromolecules 2014, 47, 7823.

    17. [17]

      Lee, J.; Kim, J.-H.; Moon, B.; Kim, H. G.; Kim, M.; Shin, J.; Hwang, H.; Cho, K. Macromolecules 2015, 48, 1723.

    18. [18]

      Chakravarthi, N.; Gunasekar, K.; Kim, C. S.; Kim, D.-H.; Song, M.; Park, Y. G.; Lee, J. Y.; Shin, Y.; Kang, I.-N.; Jin, S.-H. Macromolecules 2015, 48, 2454.

    19. [19]

      Scheuble, M.; Gross, Y. M.; Trefz, D.; Brinkmann, M.; López Navarrete, J. T.; Ruiz Delgado, M. C.; Ludwigs, S. Macromolecules 2015, 48, 7049. 

    20. [20]

      Wang, J.-T.; Ye, H.-Y.; Li, H.-J.; Mei, C.-Y.; Ling, J.; Li, W.-S.; Shen, Z. Chin. J. Chem. 2013, 31, 1367.

    21. [21]

      Homyak, P. D.; Tinkham, J.; Lahti, P. M.; Coughlin, E. B. Macromolecules 2013, 46, 8873. 

    22. [22]

      Li, Y.; Cao, Y.; Gao, J.; Wang, D.; Yu, G.; Heeger, A. J. Synth. Met. 1999, 99, 243. (b) Li, H.-J.; Wang, J.-T.; Mei, C.-Y.; Li, W.-S. Chem. Commun. 2014, 50, 7720. (c) Ge, C.-W.; Mei, C.-Y.; Ling, J.; Zhao, F.-G.; Li, H.-J.; Liang, L.; Wang, J.-T.; Yu, J.-C.; Shao, W.; Xie, Y.-S.; Li, W.-S. J. Polym. Sci. Polym. Chem. 2014, 52, 2356.

  • 加载中
    1. [1]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    2. [2]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    6. [6]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    7. [7]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    8. [8]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    9. [9]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    10. [10]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    11. [11]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    12. [12]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    13. [13]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    18. [18]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    19. [19]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    20. [20]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

Metrics
  • PDF Downloads(0)
  • Abstract views(1405)
  • HTML views(234)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return