Citation: Li Shanshan, Hong Hailong, Zhu Ning, Han Limin, Lü Jiayuan. Review About the Synthesis of 1, 3-Benzothiazinone Derivatives[J]. Chinese Journal of Organic Chemistry, ;2016, 36(9): 2024-2038. doi: 10.6023/cjoc201603034 shu

Review About the Synthesis of 1, 3-Benzothiazinone Derivatives

  • Corresponding author: Hong Hailong, honghailong_1979@163.com Zhu Ning, zhuning2622@yahoo.com
  • Received Date: 20 March 2016
    Revised Date: 6 May 2016

    Fund Project: the National Natural Science Foundation of China 21362019the Natural Science Foundation of Inner Mongolia 2016MS0207the Graduate Student Scientific Research Innovation Foundation of the Department of Education of Inner Mongolia Autonomous Region S20151012805the National Natural Science Foundation of China 21666026

Figures(37)

  • 1, 3-Benzothiazinone derivatives have widely bioactivities. So the methods for the synthesis of these 1, 3-benzothiazinone derivatives have attracted enormous attentions worldwide. From the method of introducing sulfur atom and the reaction mechanism for the formation of benzothiazinone derivatives, the method of synthesizing 1, 3-benzothiazinone derivatives has been summarized in this review. So the thiophenol derivatives, disulfide derivatives, the same carbon connected with amino and mercapto derivatives, isothiocyanate derivatives and some smaller sulfur molecules are used as starting materials.
  • 加载中
    1. [1]

      Ajani, O. O. Arch. Pharm. Chem. Life Sci. 2012, 345, 841.  doi: 10.1002/ardp.v345.11

    2. [2]

      Suazo, P. A.; Tognarelli, E. I.; Kalergis, A. M.; Gonzalez, P. A. Med. Microbiol. Immunol. 2015, 204, 161.
      (b) Chamoun, A. M.; Chockalingam, K.; Bobardt, M.; Simeon, R.; Chang, J.; Gallay, P.; Chen, Z. Antimicrob. Agents Chemother. 2012, 56, 672.
      (c) Mizuhara, T.; Oishi, S.; Ohno, H.; Shimura, K.; Matsuoka, M.; Fujii, N. Bioorg. Med. Chem. 2012, 20, 6434.

    3. [3]

      Saunthwal, R. K.; Patel, M.; Kumar, S.; Verma, A. K. Tet-rahedron Lett. 2015, 56, 677.  doi: 10.1016/j.tetlet.2014.12.058

    4. [4]

      Hong, X. C. Ph.D. Dissertation, University of Mis-souri-Columbia, Missouri, 2005.

    5. [5]

      You, Q. D. Medicine Chemistry, The Medicine Science and Technology Press of China, Beijing, 2011, p. 41, p. 477, p. 488(in Chinese).

    6. [6]

      Lu, H. P.; Edwards, M.; Wang, Q. Z.; Zhao, H. J.; Fu, H. W.; Huang, J. Z.; Gatehouse, A.; Shu, Q. Y. J. Zhejiang Univ. Sci. B 2015, 16, 113.  doi: 10.1631/jzus.B1400168

    7. [7]

      Yongpruksa, N. Ph.D. Dissertation, University of Mis-souri-Columbia, Missouri, 2011.

    8. [8]

      Ingr, J. S.; Mcclella, E. W. J. Chem. Soc. 1947, 763.  doi: 10.1039/jr9470000763

    9. [9]

      Liu, C. M.; Li, B.; Shen, Y. H.; Zhang, W. D. J. Nat. Prod. 2010, 73, 1582.  doi: 10.1021/np1002934

    10. [10]

      Khanmiri, R. H.; Moghimi, A.; Shaabani, A.; Valizadeh, H.; Ng, S. Mol. Diversity 2014, 18, 769.  doi: 10.1007/s11030-014-9536-4

    11. [11]

      Popiołek, Ł. Am. Chem. Sci. J. 2015, 6, 231.  doi: 10.9734/ACSJ

    12. [12]

      Popiołek, Ł.; Biernasiuk, A.; Malm, A. J. Heterocycl. Chem. 2016, 53, 479.
      (b) Gen, H. J.; Gao, N.; Li, Y. X.; Zhang, W. J.; Su, X.; Guo, C. J. Shenyang Pharm. Univ. 2012, 29, 834(in Chinese).
      (耿红健, 高宁, 李裕鑫, 张卫军, 苏昕, 郭春, 沈阳药科大学学报, 2012, 29, 834.)

    13. [13]

      Wang, S.; Fang, K.; Dong, G.; Chen, S.; Liu, N.; Miao, Z.; Yao, J.; Li, J.; Zhang, W.; Sheng, C. J. Med. Chem. 2015, 58, 6678.
      (b) Kamel, M. M.; Ali, H. I.; Anwar, M. M.; Mohamed, N. A.; Soliman, A. M. Eur. J. Med. Chem. 2010, 45, 572.
      (c) Chen, D. B.; Wu, J. S.; Yang, J. G.; Huang, L.; Xiang, Y. B.; Bao, W. L. Tetrahedron Lett. 2012, 53, 7104.

    14. [14]

      Solomon, V. R.; Haq, W.; Srivastava, K.; Puri, S. K.; Katti, S. J. Med. Chem. 2007, 50, 394.  doi: 10.1021/jm061002i

    15. [15]

      Yu, L.; Wei, Y. WO 2013185507, 2013[Chem. Abstr. 2013, 60, 86543].
      (b) Makarov, V.; Cole, S. T.; Möllmann, U. EP 2029583, 2007[Chem. Abstr, 2007, 147, 541887].

    16. [16]

      Makarov, V.; Lechartier, B.; Zhang, M.; Neres, J.; Sar, A. M.; Raadsen, S. A.; Hartkoorn, R. C.; Ryabova, O. B.; Vocat, A.; Decosterd, L.A.; Widmer, N.; Buclin, T.; Bitter, W.; Andries, K.; Pojer, F.; Dyson, P. J.; Cole, S. T. EMBO Mol. Med. 2014, 6, 372.
      (b) Lechartier, B.; Hartkoorn, R. C.; Cole, S. T. Antimicrob. Agents Chemother. 2012, 56, 5790.
      (c) Tiwari, R.; Miller, P. A.; Chiarelli, L. R.; Mori, G.; Šarkan, M.; Centárová, I.; Cho, S.; Mikušová, K.; Franzblau, S. G.; Oliver, A. G.; Miller, M. J. ACS Med. Chem. Lett. 2016, 7, 266.
      (d) Tiwari, R.; Miller, P. A.; Cho, S.; Franzblau, S. G.; Miller, M. J. ACS Med. Chem. Lett. 2015, 6, 128.
      (e) Tiwari, R.; Möllmann, U.; Cho, S.; Franzblau, S. G.; Miller, P. A.; Miller, M. J. ACS Med. Chem. Lett. 2014, 5, 587.

    17. [17]

      Zarghi, A.; Zebardast, T.; Daraie, B.; Hedayati, M. Bioorg. Med. Chem. 2009, 17, 5369.  doi: 10.1016/j.bmc.2009.06.056

    18. [18]

      Gaudilliere, B.; Jacobelli, H. WO 2004000321, 2003[Chem. Abstr. 2003, 140, 59649].

    19. [19]

      Fukui, K. US 20060019207, 2006[Chem. Abstr. 2006, 144, 180847].

    20. [20]

      Szabó, J. Chem. Heterocycl. Commun. 1979, 239.

    21. [21]

      Fodor, L.; Gábor, B.; Jari, S.; Pihlaja, K. J. Heterocycl. Chem. 2002, 39, 927.  doi: 10.1002/jhet.v39:5

    22. [22]

      Szabó, J.; Szucs., E.; Fodor, L.; Katócs, Á.; Bernath, G. Tetrahedron 1988, 44, 2985.

    23. [23]

      Benedini, F.; Bertolini, G.; Ferrario, F.; Guindani, R.; Sala, A. J. Heterocycl. Chem. 1994, 31, 1589.  doi: 10.1002/jhet.v31:6

    24. [24]

      Verma, S. K.; Ghorpade, R.; Pratap, A.; Kaushik, M. P. Tetrahedron Lett. 2012, 53, 2373.  doi: 10.1016/j.tetlet.2012.01.125

    25. [25]

      Zhu, X. X.; Yu, Q. S.; Greig, N. H.; Flippen-Anderson, J. L.; Brossi, A. Heterocycles 2003, 59, 115.  doi: 10.3987/COM-02-S2

    26. [26]

      Schiff, H. Liebigs Ann. Chem. 1864, 131, 118.  doi: 10.1002/(ISSN)1099-0690

    27. [27]

      Qin, W.; Long, S.; Panunzio, M.; Biondi, S. Molecules 2013, 18, 12264.
      (b) Surrey, A. R. J. Am. Chem. Soc. 1947, 69, 2911.

    28. [28]

      Speckamp, W. N.; Hiemstra, H. Tetrahedron 1985, 41, 4367.  doi: 10.1016/S0040-4020(01)82334-6

    29. [29]

      Maryanoff, B. E.; Zhang, H. C.; Cohen, J. H.; Turchi, I. J.; Maryanoff, C. A. Chem. Rev. 2004, 104, 1431.  doi: 10.1021/cr0306182

    30. [30]

      Nelson, D. A. J. Org. Chem. 1972, 37, 1447.  doi: 10.1021/jo00974a038

    31. [31]

      Kitsiou, C.; Unsworth, W. P.; Coulthard, G.; Taylor, R. J. K. Tetrahedron 2014, 70, 7172.
      (b) Unsworth, W. P.; Kitsiou, C.; Taylor, R. J. K. Org. Lett. 2013, 15, 258.

    32. [32]

      Johannes, K.; Martens, J. Tetrahedron 2010, 66, 242.  doi: 10.1016/j.tet.2009.10.107

    33. [33]

      Tierney, J. J. Heterocycl. Chem. 1989, 26, 997.  doi: 10.1002/jhet.v26:4

    34. [34]

      Silverberg, L. J.; Pacheco, C. N.; Lagalante, A.; Cannon, K. C.; Bachert, J. T.; Xie, Y.; Baker, L.; Bayliff, J. A. Int. J. Chem. 2015, 7, 150.

    35. [35]

      Mallakpour, S.; Yousefian, H. J. Braz. Chem. Soc. 2007, 18, 1220.  doi: 10.1590/S0103-50532007000600017

    36. [36]

      Pritchard, K. M.; Al-Rawi, J. M.; Hughes, A. B. Synth. Commun. 2005, 35, 1601.  doi: 10.1081/SCC-200061564

    37. [37]

      Shestakov, A. S.; Prezent, M. A.; Zlatoustovskaya, E. O.; Shikhaliev, K. S.; Falaleev, A. V.; Sidorenko, O. E. Chem. Heterocycl. Compd. 2015, 51, 370.  doi: 10.1007/s10593-015-1709-2

    38. [38]

      Elghandour, A. H. H.; Ramiz, M. M. M.; Ibrahim, M. K. A.; Elmoghayar, M. R. H. Org. Prep. Proced. Int. 1989, 21, 479.  doi: 10.1080/00304948909356414

    39. [39]

      Ibrahim, N. S.; Abed, N. M.; Kandeel, Z. E. Heterocycles 1984, 22, 1677.  doi: 10.3987/R-1984-08-1677

    40. [40]

      Allam, Y. A.; Chabaka, L. M.; Nawwar, G. A. M. Heteroat. Chem. 2000, 11, 209.  doi: 10.1002/(ISSN)1098-1071

    41. [41]

      Zhu, N.; Zhang, Z. W.; Gao, M.; Han, L. M.; Suo, Q. L.; Hong, H. L. Chin. J. Org. Chem. 2013, 33, 1423(in Chinese).  doi: 10.6023/cjoc201212014
       

    42. [42]

      Golec, Jr. F.A.; Paul, L.; Lloyd, J. R. J. Heterocycl. Chem. 1983, 20, 1755.

    43. [43]

      Zhu, N.; Du, G. Y.; Han, L. M.; Hong, H. L.; Suo, Q. L. Heterocycles 2015, 91, 1723.
      (b) Liu, B.; Zhu, N.; Hong, H. L.; Han, L. M. Tetrahedron 2015, 71, 9287.

    44. [44]

      Bakthadoss, M.; Selvakumar, R.; Srinivasan, J. Tetrahedron Lett. 2014, 55, 5808.  doi: 10.1016/j.tetlet.2014.08.084

    45. [45]

      Nageswar, Y. V. D.; Murty, M. S. R.; Ramalingam, T.; Sattur, P. B. Indian J. Chem. 1988, 27B, 1142.

    46. [46]

      Han, S.; Yoon, Y. Y.; Jung, O. S.; Lee, Y. A. Chem. Commun. 2011, 47, 10689.  doi: 10.1039/c1cc14351d

    47. [47]

      Dolbier Jr, W. R.; Burkholder, C.; Abboud, K. A.; Loehle, D. J. Org. Chem. 1994, 59, 7688.  doi: 10.1021/jo00104a025

    48. [48]

      Lipunova, G. N.; Nosova, E. V.; Mokrushina, G. A.; Ogloblina, E. G.; Aleksandrov, G. G.; Charushin, V. N. Russ. J. Org. Chem. 2003, 39, 248.  doi: 10.1023/A:1025548505109

    49. [49]

      Nosova, E. V.; Liponova, G. N.; Kravchenko, M. A.; Laeva, A. A.; Charushin, V. N. Pharm. Chem. J. 2008, 42, 169.  doi: 10.1007/s11094-008-0083-0

    50. [50]

      Huang, L.; Yang, J.; Xu, L.; Wu, X.; Yu, L.; Bao, W.; Chen, D. Heteroat. Chem. 2015, 26, 361.  doi: 10.1002/hc.2015.26.issue-5

    51. [51]

      Takagi, K. Chem. Lett. 1990, 2205.

    52. [52]

      Sainsbury, M. Oxazines. Thiazines and Their Benzo Derivatives, 1984, p. 995.

    53. [53]

      Nosova, E. V.; Lipunova, G. N.; Laeva, A. A.; Charushin, V. N. Russ. J. Org. Chem. 2006, 42, 1544.
      (b) Nosova, E. V.; Lipunova, G. N.; Laeva, A. A.; Sidorova, L. P.; Charushin, V. N. Russ. J. Org. Chem. 2007, 43, 68.

    54. [54]

      Gao, C.; Ye, T. H.; Wang, N. Y.; Zeng, X. X.; Zhang, L. D.; Xiong, Y.; You, X. Y.; Xia, Y.; Xu, Y.; Peng, C. T.; Zuo, W. Q.; Wei, Y.; Yu, L. T. Bioorg. Med. Chem. Lett. 2013, 23, 4919.
      (b) Peng, C. T.; Gao, C.; Wang, N. Y.; You, X. Y.; Zhang, L. D.; Zhu, Y. X.; Xv, Y.; Zuo, W. Q.; Ran, K.; Deng, H. X.; Lei, Q.; Xiao, K. J.; Yu, L. T. Bioorg. Med. Chem. Lett. 2015, 25, 1373.

    55. [55]

      Nosova, E. V.; Lipunova, G. N.; Laeva, A. A.; Charushin, V. N. Russ. Chem. Bull. 2005, 54, 733.  doi: 10.1007/s11172-005-0312-6

    56. [56]

      Nosova, E. V.; Laeva, A. A.; Trashakhova, T. V.; Golovchenko, A. V.; Lipunova, G. N.; Slepukhin, P. A.; Charushin, V. N. Russ. J. Org. Chem. 2009, 45, 904.  doi: 10.1134/S1070428009060189

    57. [57]

      Lipunova, G. N.; Nosova, E. V.; Laeva, A. A.; Trashakhova, T. V.; Slepukhin, P. A.; Charushin, V. N. Russ. J. Org. Chem. 2008, 44, 741.  doi: 10.1134/S1070428008050199

    58. [58]

      Wright, S. W. J. Heterocycl. Chem. 2001, 38, 732.

    59. [59]

      Villemagne, B.; Crauste, C.; Flipo, M.; Baulard, A. R.; Deprez, B.; Willand, N. Eur. J. Med. Chem. 2012, 51, 1.  doi: 10.1016/j.ejmech.2012.02.033

    60. [60]

      Stalling, T.; Pauly, J.; Kröger, D.; Martens, J. Tetrahedron 2015, 71, 8290.  doi: 10.1016/j.tet.2015.08.073

    61. [61]

      Kroger, D.; Schluter, T.; Fischer, M.; Geibel, I.; Martens, J. ACS Comb. Sci. 2015, 17, 202.  doi: 10.1021/co500165a

    62. [62]

      Rescourio, G.; Howard, A. J. Org. Chem. 2008, 73, 1612.  doi: 10.1021/jo702146n

    63. [63]

      Wentrup, C.; Bender, H.; Gross, G. J. Org. Chem. 1987, 52, 3838.  doi: 10.1021/jo00226a022

  • 加载中
    1. [1]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    6. [6]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    7. [7]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    8. [8]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    11. [11]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    12. [12]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    13. [13]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    14. [14]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

Metrics
  • PDF Downloads(0)
  • Abstract views(1348)
  • HTML views(297)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return