Citation: Geng Qian, Li Zining, Lü Zhe, Liang Guangxin. Progress in Total Syntheses of Leuconolam- Leuconoxine-Mersicarpine Alkaloids[J]. Chinese Journal of Organic Chemistry, ;2016, 36(7): 1447-1464. doi: 10.6023/cjoc201603030 shu

Progress in Total Syntheses of Leuconolam- Leuconoxine-Mersicarpine Alkaloids

  • Corresponding author: Liang Guangxin, lianggx@nankai.edu.cn
  • Received Date: 17 March 2016
    Revised Date: 27 April 2016

    Fund Project: the National Natural Science Foundation of China Nos. 21372127, 21572104

Figures(25)

  • Leuconolam-leuconoxine-mersicarpine monoterpene indole alkaloids are mainly isolated from Apocynaceae Kopsia species of plant. Though sharing the same biogenetic origin, they are a family of natural products showing incredible structural complexity and diversity. Moreover, many of them exhibit excellent bioactivities, for example, anti-inflammatory, anti-tumor activities. The progress in the total synthesis of this remarkable family of alkaloids is reviewed.
  • 加载中
    1. [1]

      Goh, S. H.; Ali, A. R. M. Tetrahedron Lett. 1986, 27, 2501. (b) Hájíček, J.; Czech, Collect. Chem. Commun. 2011, 76, 2023. (c) Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S. Nat. Prod. Rep. 2013, 30, 694. (d) Low, Y.-Y.; Hong, F.-J.; Lim, K.-H.; Thomas, N. F.; Kam, T.-S. J. Nat. Prod. 2014, 77, 327. 

    2. [2]

      Kam, T.-S.; Subramaniam, G.; Lim, K.-H.; Choo, Y.-M. Tetrahedron Lett. 2004, 45, 5995. (b) Gan, C.-Y.; Low, Y.-Y.; Thomas N. F.; Kam, T.-S. J. Nat. Prod. 2013, 76, 957.

    3. [3]

      Abe F.; Yamauchi, T. Phytochemistry 1994, 35, 169.

    4. [4]

      Feng, T.; Cai, X.-H.; Zhao, P.-J.; Du, Z.-Z.; Li W.-Q.; Luo, X.-D. Planta Med. 2009, 75, 1537. (b) Gan, C.-Y.; Low, Y.-Y.; Thomas N. F.; Kam, T.-S. J. Nat. Prod. 2013, 76, 957.

    5. [5]

      Feng, T.; Cai, X.-H.; Liu, Y.-P.; Li, Y.; Wang, Y.-Y.; Luo, X.-D J. Nat. Prod. 2010, 73, 22.

    6. [6]

      Goh, S. H.; Wei C.; Ali, A. R. M. Tetrahedron Lett. 1984, 25, 3483. 

    7. [7]

      For selected syntheses of other alkaloids bearing dearomatized indole moiety, see: (a) Han S.; Movassaghi, M. J. Am. Chem. Soc. 2011, 133, 10768. (b) Zhang, X.; Mu, T.; Zhan, F.; Ma L.; Liang, G. Angew. Chem., Int. Ed. 2011, 50, 6164. (c) Zhan, F.; Liang, G. Angew. Chem., Int. Ed. 2013, 52, 1266. (d) Li, S.; Han, J.; Li, A. Acta Chim. Sinica 2013, 71, 295. (e) Sun, Y.; Li, R.; Zhang W.; Li, A. Angew. Chem., Int. Ed. 2013, 52, 9201. (f) Sun, Y.; Chen, P.; Zhang, D.; Baunach, M.; Hertweck, C.; Li, A. Angew. Chem., Int. Ed. 2014, 53, 9012. 

    8. [8]

      Magolan, J.; Carson C. A.; Kerr, M. A. Org. Lett. 2008, 10, 1437. 

    9. [9]

      Nakajima, R.; Ogino, T.; Yokoshima S.; Fukuyama, T. J. Am. Chem. Soc. 2010, 132, 1236. 

    10. [10]

      Iwama, Y.; Okano, K.; Sugimoto, K.; Tokuyama, H. Org. Lett. 2012, 14, 2320. (b) Iwama, Y.; Okano, K.; Sugimoto, K.; Tokuyama, H. Chem. Eur. J. 2013, 19, 9325.

    11. [11]

      Xu, Z.; Wang, Q.; Zhu, J. J. Am. Chem. Soc. 2013, 135, 19127. (b) Xu, Z.; Wang Q.; Zhu, J. J. Am. Chem. Soc. 2015, 137, 6712. 

    12. [12]

      Lv, Z.; Li, Z.; Liang, G. Org. Lett. 2014, 16, 1653. (b) Li, Z.; Geng, Q.; Lv, Z.; Pritchett, B. P.; Baba, K.; Numajiri, Y.; Stoltz, B. M.; Liang, G. Org. Chem. Front. 2015, 2, 236.

    13. [13]

      Yang, Y.; Bai, Y.; Sun, S.; Dai, M. Org. Lett. 2014, 16, 6216.

    14. [14]

      Biechy, A.; Zard, S. Z. Org. Lett. 2009, 11, 2800. 

    15. [15]

      Zhong, X.; Li Y.; Han, F.-S. Chem. Eur. J. 2012, 18, 9784. (b) Zhong, X.; Qi, S.; Li, Y.; Han, F.-S. Tetrahedron 2015, 71, 3734.

    16. [16]

      Pfaffenbach, M.; Gaich, T. Eur. J. Org. Chem. 2015, 2015, 3427.

    17. [17]

      Umehara, A.; Ueda, H.; Tokuyama, H. Org. Lett. 2014, 16, 2526.

    18. [18]

      Higuchi, K.; Suzuki, S.; Ueda, R.; Oshima, N.; Kobayashi, E.; Tayu, M.; Kawasaki, T. Org. Lett. 2015, 17, 154.

    19. [19]

      Pfaffenbach, M.; Gaich, T. Chem. Eur. J. 2015, 21, 6355. 

    20. [20]

      Banwell, M. G.; Beck, D. A. S.; Willis, A. C. ARKIVOC 2006, (iii), 163. (b) Izgu, E. C.; Hoye, T. R. Chem. Sci. 2013, 4, 2262.

    21. [21]

      For representative total syntheses of rhazinilam, see: (a) Ratcliffe, A. H.; Smith, G. F.; Smith, G. N. Tetrahedron Lett. 1973, 14, 5179. (b) Magnus, P.; Rainey, T. Tetrahedron 2001, 57, 8647. (c) Johnson, J. A.; Sames, D. J. Am. Chem. Soc. 2000, 122, 6321. (d) Johnson, J. A.; Li, N.; Sames, D. J. Am. Chem. Soc. 2002, 124, 6900. (e) Bowie, A. L.; Hughes, C. C.; Trauner, D. Org. Lett. 2005, 7, 5207. (f) Liu, Z.; Wasmuth, A. S.; Nelson, S. G. J. Am. Chem. Soc. 2006, 128, 10352. (g) Bowie, A. L.; Trauner, D. J. Org. Chem. 2009, 74, 1581. (h) Gu, Z.; Zakarian, A. Org. Lett. 2010, 12, 4224. (i) McMurray, L.; Beck, E. M.; Gaunt, M. Angew. Chem., Int. Ed. 2012, 51, 9288. (j) Gualtierotti, J.-B.; Pasche, D.; Wang Q.; Zhu, J. Angew. Chem., Int. Ed. 2014, 53, 9926. 

    22. [22]

      Décor, A.; Bellocq, D.; Thoison, O.; Lekieffre, N.; Chiaroni, A.; Ouazzani, J.; Cresteil, T.; Guéritte, F.; Baudoin, O. Bioorg. Med. Chem. 2006, 14, 1558. 

    23. [23]

      Li, Z.; Liang, G. Tetrahedron Lett. 2013, 54, 242. (a) Li, H.; Cheng, B.; Boonnak, N.; Padwa, A. Tetrahedron Lett. 2011, 67, 9829. (b) Li, H.; Bonderoff, S. A.; Cheng, B.; Padwa, A. J. Org. Chem. 2014, 79, 392. 

    24. [24]

      Li, H.; Cheng, B.; Boonnak, N.; Padwa, A. Tetrahedron Lett.2011, 67, 9829.(b) Li, H.; Bonderoff, S. A.; Cheng, B.; Padwa, A. J. Org. Chem.2014, 79, 392.

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    3. [3]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    8. [8]

      Zhonghong Yan Chunxia Li Ruolin Yang . Analysis of the Use and Effectiveness of Concept Mapping Assignments in English Medium Instruction of General Chemistry. University Chemistry, 2025, 40(4): 224-231. doi: 10.12461/PKU.DXHX202405138

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    11. [11]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    12. [12]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    13. [13]

      Hui Wang Yiwen Zhang Dong Liu . “三全育人”理念下培养应用型创新人才——以“赛教结合”模式为例的探索与实践. University Chemistry, 2025, 40(6): 37-42. doi: 10.12461/PKU.DXHX202407091

    14. [14]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    15. [15]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    16. [16]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    17. [17]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    18. [18]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    19. [19]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    20. [20]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

Metrics
  • PDF Downloads(0)
  • Abstract views(4104)
  • HTML views(651)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return