Citation: Zhang Linli, Han Zhaobin, Zhang Lei, Li Mingxing, Ding Kuiling. Advances in Hydrogenation of Carboxylic Acid Derivatives and CO2 Using Triphos as the Coordination Ligand[J]. Chinese Journal of Organic Chemistry, ;2016, 36(8): 1824-1838. doi: 10.6023/cjoc201603014 shu

Advances in Hydrogenation of Carboxylic Acid Derivatives and CO2 Using Triphos as the Coordination Ligand

  • Corresponding author: Ding Kuiling, kding@sioc.ac.cn
  • Received Date: 8 March 2016
    Revised Date: 2 April 2016

    Fund Project: Project supported by the National Natural Science Foundation of China Nos. 21472215, 21572254

Figures(26)

  • The reduction of carbon dioxide, carboxylic acids and their derivatives is one of the fundamental transformations both in academia and industry. Considering the increasing environmental issues, the use of molecular hydrogen as the reducing agent is especially attractive. Due to the mild reaction condition, high reactivity and easy modification of homogeneous catalysis, the development of highly efficient and selective homogeneous hydrogenation catalysts to achieve the goal is becoming a hot topic. Impressive progresses have been made using homogenous catalysts derived from transition metals and various ligands as catalysts. Among them, the catalytic system combined with a transition metal and CH3C(CH2PPh2)3 (triphos) usually shows unique reactivity and selectivity. This review will summarize the advance in the hydrogenation of carbon dioxide, carboxylic acids and their derivatives using Ru/triphos, Co/triphos and Cu/triphos as catalysts, as well as their reaction mechanisms.
  • 加载中
    1. [1]

    2. [2]

      Gribble, G. W. Chem. Soc. Rev. 1998, 27, 395.(b) Seyden-Penne, J. Reductions by the Alumino- and Borohydrides in Organic Synthesis, 2nd ed.; Wiley, New York, 1997

    3. [3]

      Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40.(b) Blaser, H.-U.; Federsel, H.-J. Asymmetric Catalysis on Industrial Scale, 2nd ed., Weinheim, Wiley-VCH, 2010

    4. [4]

      McAlees, A. J.; McCrindle, R. J. Chem. Soc. C 1969, 2425.

    5. [5]

      Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Angew. Chem., Int. Ed. 2011, 50, 8510.(b) Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2015, 54, 6186. 

    6. [6]

      Wang, W. H.; Himeda, H.; Muckerman, J. T.; Manbeck, G. F.; Fujita, F. Chem. Rev. 2015, 115, 12936.

    7. [7]

      Nishimura, S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis, Wiley, New York, 2001.

    8. [8]

      Rieke, R.; Thakur, D.; Roberts, B.; White, G. J. Am. Oil Chem. 1997, 74, 333. 

    9. [9]

      Stein, M.; Breit, B. Angew. Chem., Int. Ed. 2013, 52, 2231. 

    10. [10]

      de Vries, J. G.; Elsevier, C. J. The Handbook of Homogeneous Hydrogenation, Wiley, Weinheim, 2007.

    11. [11]

      Grey, R. A.; Pez, G. P.; Wallo, A. J. Am. Chem. Soc. 1981, 103, 7536. 

    12. [12]

      Matteoli, U.; Menchi, G.; Bianchi, M.; Piacenti, F. J. Mol. Catal. 1988, 44, 347. 

    13. [13]

      Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1997, 667.

    14. [14]

      Hewertson, W.; Watson, H. R. J. Chem. Soc. 1962, 1490.

    15. [15]

      van Engelen, M. C.; Teunissen, H. T.; de Vries, J. G.; Elsevier, C. J. J. Mol. Catal. A: Chem. 2003, 206, 185. 

    16. [16]

      Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Zanobini, F. Coord. Chem. Rev. 1992, 120, 193.(b) Hierso, J.-C.; Amardeil, R.; Bentabet, E.; Broussier, R.; Gautheron, B.; Meunier, P.; Kalck, P. Coord. Chem. Rev. 2003, 236, 143.

    17. [17]

      Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Frediani, P.; Ramirez, J. A. Organometallics 1990, 9, 226. 

    18. [18]

      Barbaro, P.; Bianchini, C.; Meli, A.; Moreno, M.; Vizza, F. Organometallics 2002, 21, 1430.

    19. [19]

      Bianchini, C.; Meli, A.; Moneti, S.; Vizza, F. Organometallics 1998, 17, 2636.(b) Bianchini, C.; Masi, D.; Meli, A.; Peruzzini, M.; Vizza, F.; Zanobini, F. Organometallics 1998, 17, 2495.(c) Bianchini, C.; Meli, A.; Vizza, F. J. Organomet. Chem. 2004, 689, 4277.

    20. [20]

      Barbaro, P.; Bianchini, C.; Frediani, P.; Meli, A.; Vizza, F. Inorg. Chem. 1992, 31, 1523.

    21. [21]

      Mellone, I.; Bertini, F.; Gonsalvi, L.; Guerriero, A.; Peruzzini, M. Chimia 2015, 69, 331.

    22. [22]

      Dub, P. A.; Ikariya, T. ACS Catal. 2012, 2, 1718.(b) Werkmeister, S.; Neumann, J.; Junge, K.; Beller, M. Chem. Eur. J. 2015, 21, 12226. 

    23. [23]

      Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1998, 1367.

    24. [24]

      Berke, H. Book of Abstracts, XⅡth FECHEM Conference on Organometallic Chemistry, Prague, 1997, PL 9.

    25. [25]

      Rosato, D. V.; Rosato, M. V. Plastic Product Material and Process Selection Handbook, Elsevier, North Holland, 2004.

    26. [26]

      Furst, M. R. L.; Goff, R. L.; Quinzler, D.; Mecking, S.; Botting C. H.; Cole-Hamilon D. J. Green Chem. 2012, 12, 472.

    27. [27]

      vom Stein, T.; Meuresch, M.; Limper, D.; Schmitz, M.; Hölscher; Coetzee, J.; Cole-Hamilton, D. J.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc. 2014, 136, 13217. 

    28. [28]

      Wesselbaum, S.; vom Stein, T.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 7499. 

    29. [29]

      Boardman, B.; Hanton, M. J.; van Rensburg, H.; Tooze, R. P. Chem. Commun. 2006, 2289.

    30. [30]

      Hanton, M. J.; Tin, S.; Boardman, B. J.; Miller, P. J. Mol. Catal. A: Chem. 2011, 346, 70. 

    31. [31]

      Li, Y. H.; Topf, C.; Cui, X. J.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2015, 54, 5196. 

    32. [32]

      Kilner, M.; Tyers, D. V.; Crabtree, S. P.; Wood, M. A. US 7709689, 2003 [Chem. Abstr. 2003, 139, 366612].

    33. [33]

      Crabtree, S. P.; Tyers, D. V.; Sharif, M. WO 05/051907, 2005 [Chem. Abstr. 2005, 143, 43765].

    34. [34]

      Rosi, L.; Frediani, M.; Frediani, P. J. Organomet. Chem. 2010, 695, 1314. 

    35. [35]

      Geilen, F. M. A.; Engendahl, B.; Harwardt, A.; Marquardt, W.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2010, 49, 5510. 

    36. [36]

      Geilen, F. M. A.; Engendahl, B.; Hölscher, M.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc. 2011, 133, 14349. 

    37. [37]

      Phanopoulos, A.; White, A. J. P.; Long, N. J.; Miller, P. W. ACS Catal. 2015, 5, 2500. 

    38. [38]

      Cui, X. J.; Li, Y. H.; Topf, C.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2015, 54, 10596. 

    39. [39]

      Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411. 

    40. [40]

      Magro, A. A. N.; Eastham, G. R.; Cole-Hamilton, D. J. Chem. Commun. 2007, 3154.

    41. [41]

      Dodds, D. L.; Coetzee, J.; Klankermayer, J.; Brosinski, S.; Leitner, W.; Cole-Hamilton, D. J. Chem. Commun. 2012, 48, 12249. 

    42. [42]

      Coetzee, J.; Dodds, D. L.; Klankermayer, J.; Brosinski, S.; Leitner, W.; Slawin, A. M. Z.; Col-Hamilton, D. J. Chem. Eur. J. 2013, 19, 11039. 

    43. [43]

      Cabrero-Antonino, J. R.; Alberico, E.; Junge, K.; Junge, H.; Beller M. Chem. Sci. 2016, 7, 3432.

    44. [44]

      Meuresch, M.; Westhues, S.; Leitner, W.; Klankermayer, J. Angew. Chem., Int. Ed. 2016, 55, 1392. 

    45. [45]

      Cabrero-Antonino, J. R.; Sorribes, I.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2016, 55, 387. 

    46. [46]

      Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18122.(b) Li, Y. N.; He, L. N.; Liu, A. H.; Lang, X. D.; Yang, Z. Z.; Yu, B.; Luan, C. R. Green Chem. 2013, 15, 2825.(c) Khusnutdinova, J. R.; Garg, J. A.; Milstein, D. ACS Catal. 2015, 5, 2416.(d) Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. K. S. J. Am. Chem. Soc. 2016, 138, 778. 

    47. [47]

      Wesselbaum, S.; Moha, V.; Meuresch, M.; Brosinski, S.; Thenert, K. M.; Kothe, J.; vom Stein, T.; Englert, U.; Holscher, M.; Klankermayer, J.; Leitner, W. Chem. Sci. 2015, 6, 693.

    48. [48]

      Beydoun, K.; vom Stein, T.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2013, 52, 9554. 

    49. [49]

      Li, Y.; Sorribes, I.; Yan, T.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 12156. 

    50. [50]

      Beydoun, K.; Ghattas, G.; Thenert, K.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2014, 53, 11010. 

    51. [51]

      Beydoun, K.; Thenert, K.; Streng, E. S.; Brosinski, S.; Leitner, W.; Klankermayer, J. ChemCatChem 2016, 8, 135

    52. [52]

      Li, Y.; Yan, T.; Junge, K.; Beller M. Angew. Chem., Int. Ed. 2014, 53, 10476.

    53. [53]

      Savourey, S.; Lefevre, G.; Berthet, J.-C.; Cantat, T. Chem. Commun. 2014, 50, 14033.

    54. [54]

      Sorribes, I.; Cabrero-Antonino, J. R.; Vicent, C.; Junge, K.; Beller, M. J. Am. Chem. Soc. 2015, 137, 13580. 

    55. [55]

      Korstanje, T. J.; van der Vlugt, J. I.; Elsevier, C. J.; de Bruin, B. Science 2015, 350, 298.

    56. [56]

      Zall, C. M.; Linehan, J. C.; Appel A. M. ACS Catal. 2015, 5, 5301. 

    57. [57]

      Watari, R.; Kayaki, Y.; Hirano, S.; Matsumoto, N.; Ikariya, T. Adv. Synth. Catal. 2015, 357, 1369. 

  • 加载中
    1. [1]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    2. [2]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    5. [5]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    6. [6]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    7. [7]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    10. [10]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    11. [11]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    15. [15]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    17. [17]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    18. [18]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    19. [19]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    20. [20]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(0)
  • Abstract views(1817)
  • HTML views(345)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return