Citation: Zhang Song, Lu Junzhu, Ye Jinxing, Duan Wei-liang. Asymmetric C-H Arylation for the Synthesis of Planar Chiral Ferrocenes: Controlling Enantioselectivity Using Chiral Phosphoric Acids[J]. Chinese Journal of Organic Chemistry, ;2016, 36(4): 752-759. doi: 10.6023/cjoc201602032 shu

Asymmetric C-H Arylation for the Synthesis of Planar Chiral Ferrocenes: Controlling Enantioselectivity Using Chiral Phosphoric Acids

  • Corresponding author: Ye Jinxing,  Duan Wei-liang, 
  • Received Date: 28 February 2016
    Available Online: 30 March 2016

    Fund Project: 国家自然科学基金(Nos.20902099,21172238,21472218)资助项目. (Nos.20902099,21172238,21472218)

  • Transition-metal-catalyzed direct activation reactions of unreactive C-H bond has been extensively developed in recent years. Although numerous synthetic methods have been reported to build diverse complex compounds, enantioselective C-H activation has not been paid much attention probably because of the absence of suitable ligands to control the stereoselectivity in the C-H activation reaction. Herein, a Pd(0)-catalyzed enantioselective synthesis of planar chiral ferrocenes was described, and chiral phosphoric acids were used as the only chiral source to control the stereoselectivity in the C-H activation reactions.
  • 加载中
    1. [1]

      [1] For selected reviews on C-H activation, see: (a) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826.

    2. [2]

      (b) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev. 2010, 39, 712.

    3. [3]

      (c) Li, H.; Li, B.-J.; Shi, Z.-J. Catal. Sci. Technol. 2011, 1, 191.

    4. [4]

      (d) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236.

    5. [5]

      (e) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev. 2010, 39, 712.

    6. [6]

      (f) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem.-Eur. J. 2010, 16, 2654.

    7. [7]

      (g) Yu, J.-Q.; Shi, Z. C-H Activation, Topics in Current Chemistry, Springer, Berlin, 2010, Vol. 292.

    8. [8]

      (h) Dastbaravardeh, N.; Christakakou, M.; Haider, M.; Schnürch, M. Synthesis 2014, 46, 1421.

    9. [9]

      (i) Liao, G.; Shi, B. Acta Chim. Sinica 2015, 73, 1283 (in Chinese). (廖港, 史炳锋, 化学学报, 2015, 73, 1283.)

    10. [10]

      [2] For reviews on enantioselective C-H activation, see: (a) Wencel-Delord, J.; Colobert, F. Chem.-Eur. J. 2013, 19, 14010.

    11. [11]

      (b) Engle, K. M.; Yu, J.-Q. J. Org. Chem. 2013, 78, 8927.

    12. [12]

      (c) Zheng, C.; You, S.-L. RSC Adv. 2014, 4, 6173.

    13. [13]

      (d) Pedroni, J.; Cramer, N. Chem. Commun. 2015, 51, 17647.

    14. [14]

      [3] Giri, R.; Liang, J.; Yu, J.-Q. Angew. Chem., Int. Ed. 2005, 44, 7420.

    15. [15]

      [4] For selected examples of Pd-catalyzed enantioselective C-H activation using chiral amino acid as the ligand, see: (a) Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 4882.

    16. [16]

      (b) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460.

    17. [17]

      (c) Wasa, M.; Engle, K. M.; Lin, D. W.; Yoo, E. J.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 19598.

    18. [18]

      (d) Musaev, D. G.; Kaledin, A.; Shi, B.-F.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 1690.

    19. [19]

      (e) Cheng, X.-F.; Li, Y.; Su, Y.-M.; Yin, F.; Wang, J.-Y.; Sheng, J.; Vora, H. U.; Wang, X.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 1236.

    20. [20]

      (f) Chu, L.; Wang, X.-C.; Moore, C. E.; Rheingold, A. L.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 16344.

    21. [21]

      (g) Chu, L.; Xiao, K.-J.; Yu, J.-Q. Science 2014, 346, 451.

    22. [22]

      (h) Xiao, K.-J.; Lin, D.; Miura, M.; Zhu, R.-Y.; Gong, W.; Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 8138.

    23. [23]

      (i) Chan, K. S. L.; Fu, H.-Y.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 2042.

    24. [24]

      [5] (a) Albicker, M. R.; Cramer, N. Angew. Chem., Int. Ed. 2009, 48, 9139.

    25. [25]

      (b) Renaudat, A.; Jean-Ge'rard, L.; Jazzar, R.; Kefalidis, C. E.; Clot, E.; Baudoin, O. Angew. Chem., Int. Ed. 2010, 49, 7261.

    26. [26]

      (c) Nakanishi, M.; Katayev, D.; Besnard, C.; Kündig, E. P. Angew. Chem., Int. Ed. 2011, 50, 7438.

    27. [27]

      (d) Anas, S.; Cordi, A.; Kagan, H. B. Chem. Commun. 2011, 47, 11483.

    28. [28]

      (e) Katayev, D.; Nakanishi, M.; Bürgi, T.; Kündig, E. P. Chem. Sci. 2012, 3, 1422.

    29. [29]

      (f) Saget, T.; Lemouzy, S. J.; Cramer, N. Angew. Chem., Int. Ed. 2012, 51, 2238.

    30. [30]

      (g) Martin, N.; Pierre, C.; Davi, M.; Jazzar, R.; Baudoin, O. Chem.-Eur. J. 2012, 18, 4480.

    31. [31]

      (h) Shintani, R.; Otomo, H.; Ota, K.; Hayashi, T. J. Am. Chem. Soc. 2012, 134, 7305.

    32. [32]

      (i) Saget, T.; Cramer, N. Angew. Chem., Int. Ed. 2012, 51, 12842.

    33. [33]

      (j) Saget, T.; Cramer, N. Angew. Chem., Int. Ed. 2013, 52, 7865.

    34. [34]

      (k) Katayev, D.; Jia, Y.-X.; Sharma, A. K.; Banerjee, D.; Besnard, C.; Sunoj, R. B.; Kündig, E. P. Chem.-Eur. J. 2013, 19, 11916.

    35. [35]

      (l) Larionov, E.; Nakanishi, M.; Katayev, D.; Besnard, C.; Kündig, E. P. Chem. Sci. 2013, 4, 1995.

    36. [36]

      [6] (a) Hyster, T. K.; Knörr, L.; Ward, T. R.; Rovis, T. Science 2012, 338, 500.

    37. [37]

      (b) Ye, B.; Cramer, N. Science 2012, 338, 504.

    38. [38]

      (c) Ye, B.; Cramer, N. J. Am. Chem. Soc. 2013, 135, 636.

    39. [39]

      (d) Ye, B.; Donets, P. A.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 507.

    40. [40]

      (e) Ye, B.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 7896.

    41. [41]

      [7] For books see: (a) Hayashi, T., Togni, A Ferrocenes, VCH, Weinheim, Germany, 1995.

    42. [42]

      (b) Štĕpnička, P. Ferrocenes, Wiley: Chichester, 2008.

    43. [43]

      (c) Dai, L.-X., Hou, X.-L. Chiral Ferrocenes in Asymmetric Catalysis, Wiley, New York, 2010.

    44. [44]

      (d) Barlow, S.; O'Hare, D. Chem. Rev. 1997, 97, 637.

    45. [45]

      (e) Azevedo, C. G.; Vollhardt, K. P. C. Synlett 2002, 1019.

    46. [46]

      (f) Wang, Y.; Zhang A.; Liu, L.; Kang J.; Zhang, F.; Ma, W. Chin, J. Org. Chem. 2015, 35, 1399 (in Chinese). (王艳芳, 张安安, 刘澜涛, 康建勋, 张富强, 马文瑾, 有机化学, 2015, 35, 1399.)

    47. [47]

      [8] (a) Siegel, S.; Schmalz, H.-G. Angew. Chem., Int. Ed. Engl. 1997, 36, 2456.

    48. [48]

      (b) Günay, M. E.; Richards, C. J. Organometallics 2009, 28, 5833.

    49. [49]

      (c) Dendele, N.; Bisaro, F.; Gaumont, A.-C.; Perrio, S.; Richards, C. J. Chem. Commun. 2012, 48, 1991.

    50. [50]

      (d) Takebayashi, S.; Shizuno, T.; Otani, T.; Shibata, T. Beilstein J. Org. Chem. 2012, 8, 1844.

    51. [51]

      [9] (a) Ogasawara, M.; Watanabe, S.; Fan, L.; Nakajima, K.; Takahashi, T. Organometallics 2006, 25, 5201.

    52. [52]

      (b) Ogasawara, M.; Watanabe, S.; Nakajima, K.; Takahashi, T. Pure Appl. Chem. 2008, 80, 1109.

    53. [53]

      (c) Ogasawara, M.; Watanabe, S.; Nakajima, K.; Takahashi, T. J. Am. Chem. Soc. 2010, 132, 2136.

    54. [54]

      (d) Ogasawara, M.; Wu, W.-Y.; Arae, S.; Watanabe, S.; Morita, T.; Takahashi, T.; Kamikawa, K. Angew. Chem., Int. Ed. 2012, 51, 2951.

    55. [55]

      (e) Ogasawara, M.; Arae, S.; Watanabe, S.; Nakajima, K.; Takahashi, T. Chem. Eur. J. 2013, 19, 4151.

    56. [56]

      [10] (a) Gao, D.-W.; Shi, Y.-C.; Gu, Q.; Zhao, Z.-L.; You, S.-L. J. Am. Chem. Soc. 2013, 135, 86.

    57. [57]

      (b) Gao, D.-W.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2016, 138, 2544.

    58. [58]

      [11] (a) Pi, C.; Li, Y.; Cui, X.-L.; Zhang, H.; Han, Y.-B.; Wu, Y.-J. Chem. Sci. 2013, 4, 2675.

    59. [59]

      (b) Pi, C.; Cui, X.; Liu, X.; Guo, M.; Zhang, H.; Wu, Y. Org. Lett. 2014, 16, 5164.

    60. [60]

      [12] (a) Gao, D.-W.; Yin, Q.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2014, 136, 4841.

    61. [61]

      (b) Deng, R.-X.; Huang, Y.-Z.; Kang, Y.-B.; Gu, Z.-H. J. Am. Chem. Soc. 2014, 136, 4472.

    62. [62]

      [13] (a) Ma, X.; Gu, Z. RSC Adv. 2014, 4, 36241.

    63. [63]

      (b) Liu, L.; Zhang, A.-A.; Zhao, R.-J.; Li, F.; Meng, T.-J.; Ishida, N.; Murakami, M.; Zhao, W.-X. Org. Lett. 2014, 16, 5336.

    64. [64]

      [14] Gao, D.-W.; Zheng, C.; Gu, Q.; You, S.-L. Organometallics 2015, 34, 4618.

    65. [65]

      [15] Yan, S.-B.; Zhang, S.; Duan, W.-L. Org. Lett. 2015, 17, 2458.

    66. [66]

      [16] For selected reviews, see: (a) Akiyama, T. Chem. Rev. 2007, 107, 5744.

    67. [67]

      (b) Terada, M. Chem. Commun. 2008, 4097.

    68. [68]

      (c) Zamfir, A.; Schenker, S.; Freund, M.; Tsogoeva, S. B. Org. Biomol. Chem. 2010, 8, 5262.

    69. [69]

      (d) Su, Y.; Shi, F. Chin, J. Org. Chem. 2010, 30, 486 (in Chinese). (苏亚军, 史福, 有机化学, 2010, 30, 486.)

    70. [70]

      (e) Wu, X.; Li, M.; Gong, L. Acta Chim. Sinica 2013, 71, 1091 (in Chinese). (吴祥, 李明丽, 龚流柱, 化学学报, 2013, 71, 1091.)

    71. [71]

      (f) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047 and references therein.

    72. [72]

      [17] Examples of chiral phosphoric acids as additives in C-H activation reactions: (a) Zhang, S.-Y.; He, G.; Nack, W. A.; Zhao, Y.-S.; Li, Q.; Chen, G. J. Am. Chem. Soc. 2013, 135, 2124.

    73. [73]

      (b) Chen, K.; Hu, F.; Zhang, S.-Q.; Shi, B.-F. Chem. Sci. 2013, 4, 3906.

    74. [74]

      (c) Zhang, S.-Y.; Li, Q.; He, G.; Nack, W. A.; Chen, G. J. Am. Chem. Soc. 2013, 135, 12135.

    75. [75]

      (d) Chen, K.; Shi, B.-F. Angew. Chem., Int. Ed. 2014, 53, 11950.

    76. [76]

      (e) Zhang, S.-Y.; Li, Q.; He, G.; Nack, W. A.; Chen, G. J. Am. Chem. Soc. 2015, 137, 531. For an example of CPAs-mediated enantioselective cross-dehydro- genative coupling reactions, see:

    77. [77]

      (f) Neel, A. J.; Hehn, J. P.; Tripet, P. F.; Toste, F. D. J. Am. Chem. Soc. 2013, 135, 14044.

    78. [78]

      [18] For selected reports involving organic phosphate ligands in Pd-catalyzed reactions, see: (a) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336.

    79. [79]

      (b) Jiang, G.; List, B. Angew. Chem., Int. Ed. 2011, 50, 9471.

    80. [80]

      (c) Chai, Z.; Rainey, T. J. J. Am. Chem. Soc. 2012, 134, 3615.

    81. [81]

      (d) Yu, S.-Y.; Zhang, H.; Gao, Y.; Mo, L.; Wang, S.; Yao, Z.-J. J. Am. Chem. Soc. 2013, 135, 11402.

    82. [82]

      (e) Zhang, D.; Qiu, H.; Jiang, L.; Lv, F.; Ma, C.; Hu, W. Angew. Chem., Int. Ed. 2013, 52, 13356.

    83. [83]

      (f) Wang, P. S.; Lin, H.-C.; Zhai, Y.-J.; Han, Z.-Y.; Gong, L.-Z. Angew. Chem., Int. Ed. 2014, 53, 12218.

    84. [84]

      (g) Tao, Z.-L.; Li, X.-H.; Han, Z.-Y.; Gong, L.-Z. J. Am. Chem. Soc. 2015, 137, 4054.

    85. [85]

      [19] For reviews or reports on CMD mechanism, see: (a) Lapointe, D.; Fagnou, K. Chem. Lett. 2010, 39, 1118.

    86. [86]

      (b) Livendahl, M.; Echavarren, A. M. Isr. J. Chem. 2010, 50, 630.

    87. [87]

      (c) Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496.

    88. [88]

      (d) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848.

    89. [89]

      [20] (a) Anas, S.; Cordi, A.; Kagan. H. B. Chem. Commun. 2011, 47, 11483.

    90. [90]

      (b) Nakanishi, M.; Katayev, D.; Besnard, C.; Kündig, E. P. Angew. Chem., Int. Ed. 2011, 50, 7438.

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    6. [6]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    7. [7]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    8. [8]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    9. [9]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    10. [10]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    11. [11]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    12. [12]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    13. [13]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    14. [14]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    15. [15]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    16. [16]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    17. [17]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    18. [18]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    19. [19]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    20. [20]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

Metrics
  • PDF Downloads(1)
  • Abstract views(744)
  • HTML views(163)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return