Theoretical Study on the Correlation of the Experimental Nucleophilic and Electrophilic Reaction Rates of Aromatic Compounds with the Prediction Results of Theoretical Methods
- Corresponding author: Chen Feiwu, chenfeiwu@ustb.edu.cn
Citation:
Cao Jingsi, Chen Feiwu. Theoretical Study on the Correlation of the Experimental Nucleophilic and Electrophilic Reaction Rates of Aromatic Compounds with the Prediction Results of Theoretical Methods[J]. Chinese Journal of Organic Chemistry,
;2016, 36(10): 2463-2471.
doi:
10.6023/cjoc201602026
Esteves, P. M.; Carneiro, J. W. de M.; Cardoso, S. P.; Barbosa, A. G. H.; Laali, K. K.; Rasul, G.; Prakash, G. K. S.; Oláh, G. A. J. Am. Chem. Soc. 2003, 125, 4836.
Hänggi, P.; Talkner, P.; Borkovec, M. Rev. Mod. Phys. 1990, 62, 251.
Zhang, J. Z. H. Theory and Application of Quantum Molecular Dynamics, World Scientific, Singapore, 1999.
Murray, J. S.; Politzer, P. WIREs Comput. Mol. Sci. 2011, 1, 153.
Lu, T.; Chen, F. W. J. Mol. Model 2013, 19, 5387.
Liu, S. B.; Rong, C.; Lu, T. J. Phys. Chem. A 2014, 118, 3698.
Wu, W. J.; Wu, Z. M.; Rong, C. Y.; Lu, T.; Huang, Y.; Liu, S. B. J. Phys. Chem. A 2015, 119, 8216.
Wu, Z. M.; Rong, C. Y.; Lu, T.; Ayer, P. W.; Liu, S. B. Phys. Chem. Chem. Phys. 2015, 17, 27052.
Liu, S. B. Acta Phys.-Chim. Sin. 2016, 32, 98.
Cao, J. S.; Ren, Q.; Chen, F. W.; Lu, T. Sci. China Chem. 2015, 58, 1845.
Ammer, J.; Nolte, C.; Mayr, H. J. Am. Chem. Soc. 2012, 134, 13902.
Horn, M.; Schappele, L. H.; Lang-Wittkowski, G.; Mayr, H.; Ofial, A. R. Chem.-Eur. J. 2013, 19, 249.
Shi, L.; Chu, Y.; Knochel, P.; Mayr, H. Angew. Chem., Int. Ed. 2008, 47, 202.
March, J. Advanced Organic Chemistry:Reactions, Mechanisms and Structure, Vol. 4, Wiley-Interscience Publication, United States of America, 1992, pp. 505~510.
Lakhdar, S.; Westermaier, M.; Terrier, F.; Goumont, R.; Boubaker, T.; Ofial, A. R.; Mayr, H. J. Org. Chem. 2006, 71, 9088.
Kuivila, H. G.; Hendrickson, A. R. J. Am. Chem. Soc. 1952, 74, 5068.
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.
Axel, D.; Becke J. Chem. Phys. 1993, 98, 1372.
Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129.
Alan, R. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83(2), 15.
Glendening, E. D.; Landis, C. R.; Weinhold, F. WIREs Comput. Mol. Sci. 2012, 2, 1.
Nalewajski; Parr, R. F. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 8879.
Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules, Springer, Netherlands, 1980.
Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801.
Geerlings, P.; Proft, De F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793.
Jin, J. L.; Li, H. B.; Lu, T.; Duan, Y. A.; Geng, Y.; Wu, Y.; Su, Z. M. J. Mol. Model. 2013, 19, 3437.
Chattaraj, P. K.; Maiti, B.; Sarkar, U. J. Phys. Chem. A 2003, 107, 4973.
Oláh, J.; Van Alsenoy, C.; Sannigrahi, A. B. J. Phys. Chem. A 2002, 106, 3885.
Politzer, P.; Murray, J. S. In Reviews in Computational Chemistry, Vol. 2, Eds.:Lipkowitz, K. B.; Boyd, D. B., Wiley, New York, 1991, p. 273.
Politzer, P.; Murray, J. S. In Chemical Reactivity Theory:A Density Functional View, Ed.:Chattaraj, P. K., CRC Press, London, 2009, p. 243.
Geerlings, P.; Langenaeker, W.; Proft, D. F.; Baeten, A. Theor. Comput. Chem. 1996, 3, 587.
Politzer, P.; Murray, J. S.; Concha, M. C. Int. J. Quantum Chem. 2002, 88, 19.
Politzer, P.; Laurence, P. R.; Jayasuriya, K. Environ. Health Perspect. 1985, 61, 191.
Bader, R. F. W.; Carroll, M. T.; Cheeseman, J. R.; Chang, C. J. Am. Chem. Soc. 1987, 109, 7968.
Lu, T.; Chen, F. W. J. Mol. Graphics Modell. 2012, 38, 314.
Murray, J. S.; Peralta-Inga, Z.; Politzer, P.; Ekanayake, K.; LeBreton, P. Int. J. Quantum Chem. 2001, 83, 245.
Sjoberg, P.; Murray, J. S.; Brinck, T.; Politzer, P. Can. J. Chem. 1990, 68, 1440.
Politzer, P.; Murray, J. S. In Theoretical Aspects of Chemical Reactivity, Ed.:Toro-Labbé, A., Elsevier, Amsterdam, 2007, p. 119.
Fukui, K. Theory of Orientation and Stereoselection, Springer, Berlin, 2013.
Fukui, K.; Yonezawa, T.; Shingu, H. J. Chem. Phys. 1952, 20, 722.
Yuan Zhuang , Wenhui Li , Jie Li . Curriculum Reform of “Chemical Composition Analysis of Materials” under Background of First-Class Discipline Construction. University Chemistry, 2025, 40(5): 283-290. doi: 10.12461/PKU.DXHX202407070
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
Ping Ye , Lingshuang Qin , Mengyao He , Fangfang Wu , Zengye Chen , Mingxing Liang , Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Simin Fang , Hong Wu , Wei Liu , Wei Wei , Hongyan Feng , Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046
Wenhui Li , Changshuo Zhu , Xinyu Cui , Chenfei Zhao , Lina Qiu , Yan Li , Chuandong Wu , Min Yang , Yuan Zhuang . Visual Determination of Acid-Base Titration Endpoints Using Smartphone APP-Based Analysis. University Chemistry, 2025, 40(7): 328-335. doi: 10.12461/PKU.DXHX202409062
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
Lijun Dong , Pengcheng Du , Guangnong Lu , Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
Zhongyan Cao , Youzhi Xu , Menghua Li , Xiao Xiao , Xianqiang Kong , Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
Yuan Zheng , Quan Lan , Zhenggen Zha , Lingling Li , Jun Jiang , Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Experimental reaction rates vs. NPA charges (a),Hirshfeld charges (b),LUMO orbital composition (c) and ESP(1.6) (d). Red lines are the fitting curves
Experimental reaction rates vs. Hirshfeld charges (a) and ESP(1.6) (b). Red lines are the fitting curves
Experimental reaction rates vs. NPA charges (a) and Hirshfeld charges (b). Red lines are the fitting curves
Experimental reaction rates vs. Hirshfeld charge (a),ALIE(1.6) (b),and ESP(1.6) (c). Red lines are the fitting curves
Experimental reaction rates vs. Hirshfeld charges (a) and ESP(1.6) (b). Red lines are the fitting curves
Experimental reaction rates vs. Hirshfeld charges (a) and ESP(1.6) (b). Red lines are the fitting curves