Citation: Zhang Bianxiang, Kang Yongqiang, Shi Ruixue. Synthesis of Aromatic Heterocyclic Sulfide Compounds[J]. Chinese Journal of Organic Chemistry, ;2016, 36(8): 1814-1823. doi: 10.6023/cjoc201602021 shu

Synthesis of Aromatic Heterocyclic Sulfide Compounds

  • Corresponding author: Zhang Bianxiang, zbxthh@sxu.edu.cn
  • Received Date: 22 February 2016
    Revised Date: 25 March 2016

    Fund Project: Project supported by the Science and Technology Innovation Project of Shanxi Province No. 2014101011

Figures(16)

  • Recently, the aromatic heterocyclic sulfide was widely used in medical and functional materials as an intermediate in organic chemistry and a structural unit in drug synthesis. Their synthetic method has become one of the hot research areas. This review summarizes the recent synthetic methods of aromatic heterocyclic thioether, which mainly involves metallic catalyzed and no metal-catalyzed methods, as well as benzene alkyne intermediate method. Some of their synthetic mechanisms were illustrated.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

       

    5. [5]

      Kosugi, M.; Shimizu, T.; Migita, T. Chem. Lett. 1978, 13.

    6. [6]

      Migita, T.; Shimizu, T.; Asami, Y.; Shiobara, J.; Kato, Y.; Kosugi, M. Chem. Soc. Jpn. 1980, 53, 1385.(b) Murahashi, S.; Yamamura, M.; Yanagisawa, K.; Mita, N.; Kondo, K. J. Org. Chem. 1979, 44, 2408.(c) Foa, M.; Santi, R.; Garavaglia, F. J. Organomet. Chem. 1981, 206, C29. 

    7. [7]

      Dickens, M. J.; Gilday, J. P.; Mowlem, T. J.; Widdowson, D. A. Tetrahedron 1991, 47, 8621. 

    8. [8]

      Guo, Y. J.; Tang, R. Y.; Li, J. H.; Zhong, P.; Zhang, X. G. Adv. Synth. Catal. 2009, 351, 2615. 

    9. [9]

      Wu, G. L.; Liu, Q.; Shen, Y. L.; Wu, W. T.; Wu, L. M. Tetrahedron Lett. 2005, 46, 5831.(b) Schlosser, K. M.; Krasutsky, A. P.; Hamilton, H. W.; Reed, J. E.; Sexton, K. Org. Lett. 2004, 6, 819.(c) La Regina, G.; Edler, M. C.; Brancale, A.; Kandil, S.; Coluccia, A.; Piscitelli, F.; Hamel, E.; De Martino, G.; Matesanz, R.; Diaz, J. F.; Scovassi, A. I.; Prosperi, E.; Lavecchia, A.; Novellino, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2007, 50, 2865.(d) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873.(e) Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J. Tetrahedron Lett. 2007, 48, 7034. 

    10. [10]

      Chen, Y.; Cho, C. H.; Shi, F.; Larock, R. C. J. Org. Chem. 2009, 74, 6802. 

    11. [11]

      Anbarasan, P.; Neumann, H.; Beller, M. Chem. Commun. 2011, 47, 3233.

    12. [12]

      Cong, M.; Fan, Y.; Raimundo, J.-M.; Xia, Y.; Liu, Y.; Quelever, G.; Qu, F.-Q.; Peng, L. Chem.-Eur. J. 2013, 19, 17267.(b) Cong, M.; Fan, Y.; Raimundo, J.-M.; Tang, J.; Peng, L. Org. Lett. 2014, 16, 4074. 

    13. [13]

      Taniguchi, N.; Onami, T. J. Org. Chem. 2004, 69, 915. 

    14. [14]

      Taniguchi, N. J. Org. Chem. 2007, 72, 1241.(b) Taniguchi, N. Synlett. 2006, 1351. 

    15. [15]

      Luo, P.-S.; Yu, M.; Tang, R.-Y.; Zhong, P.; Li, J.-H. Tetrahedron Lett. 2009, 50, 1066.

    16. [16]

      Fukuzawa, S.-I.; Shimizu, E.; Atsuumi, Y.; Haga, M.; Ogata, K. Tetrahedron Lett. 2009, 50, 2374.

    17. [17]

      Ranjit, S.; Lee, R.; Heryadi, D.; Shen, C.; Wu, J.; Zhang, P.; Hang, K. W.; Liu, X. J. Org. Chem. 2011, 76, 8999. 

    18. [18]

      Dai, C.; Xu, Z.; Huang, F.; Yu, Z.; Gao, Y.-F. J. Org. Chem. 2012, 77, 4414.

    19. [19]

      He, Z.; Luo, F.; Li, Y.; Zhu, G. Tetrahedron Lett. 2013, 54, 5907.

    20. [20]

      Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Wu, D.; Zhou, X. Org. Lett. 2011, 13, 454.

    21. [21]

      Alves, D.; Lara, R. G.; Contreira, M. E.; Radatz, C. S.; Duarte, L. F. B.; Perin, G. Tetrahedron Lett. 2012, 53, 3364. 

    22. [22]

      He, G.; Huang, Y.; Tong, Y.; Zhang, J.; Zhao, D.; Zhou, S.; Han, S. Tetrahedron Lett. 2013, 54, 5318.

    23. [23]

       

    24. [24]

      Jiang, X. F.; Qiao, Z. J. CN 104725172A, 2015 [Chem. Abstr. 2015, 163, 191616].

    25. [25]

      Singh, N.; Singh, R.; Raghuvanshi, D. S.; Singh, K. N. Org. Lett. 2013, 15, 5874. 

    26. [26]

       

    27. [27]

      Taniguchi, N. J. Org. Chem. 2004, 69, 6904. 

    28. [28]

      Gómez-Benítez, V.; Baldovino-Pantaleón, O.; Herrera-Álvarez, C.; Toscano, R. A.; Morales-Morales, D. Tetrahedron Lett. 2006, 47, 5059. 

    29. [29]

      Gendre, F.; Yang, M.; Diaz, P. Org. Lett. 2005, 7, 2719. 

    30. [30]

      Duan, Z.; Ranjit, S.; Zhang, P.; Liu, X. Chem. Eur. J. 2009, 15, 3666.

    31. [31]

      Wang, P.-F.; Wang, X.-Q.; Dai, J.-J.; Feng, Y.-S.; Xu, H.-J. Org. Lett. 2014, 16, 4586.

    32. [32]

      Ge, W.; Wei, Y. Green Chem. 2012, 14, 2066.

    33. [33]

      Azeredo, J. B.; Godoi, M.; Martins, G. M.; Silveira, C. C.; Braga, A. L. J. Org. Chem. 2014, 79, 4125. 

    34. [34]

      Yang, F. L.; Tian, S. K. Angew. Chem., Int. Ed. 2013, 52, 4929. 

    35. [35]

      Hou, W.; Wei, Q.; Liu, G.; Chen, J.; Guo, J.; Peng, Y. Org. Lett. 2015, 17, 4870.

    36. [36]

      Kitamura, T.; Zhang, B.-X.; Fujiwara, Y. J. Org. Chem. 2003, 68, 731. 

    37. [37]

      Wang, F.-Y.; Chen, Z.-C.; Zheng, Q.-G. J. Chem. Res. 2004, 127.

    38. [38]

      Wagner, A. M.; Sanford, M. S. J. Org. Chem. 2014, 79, 2263. 

    39. [39]

      Zhan, H.; Cao, H.; Qiu, H.; Li, N.; Chen, L.; Liu, J.; Cai, H.; Tan, J. RSC Adv. 2015, 5, 32205.

    40. [40]

    41. [41]

      Shaw, E.; Bernstein, J.; Losee, K.; Lott, W. A. J. Am. Chem. Soc. 1950, 72, 4362. 

    42. [42]

      Singh, R.; Raghuvanshi, D. S.; Singh, K. N. Org. Lett. 2013, 15, 4202. 

    43. [43]

    44. [44]

      Varun, B. V.; Prabhu, K. R. J. Org. Chem. 2014, 79, 9655. 

    45. [45]

    46. [46]

      Yonova, I. M.; Osborne, C. A.; Morrissette, N. S.; Jarvo, E. R. J. Org. Chem. 2014, 79, 1947. 

    47. [47]

      Li, Z. J.; Sun, L.X.; Yang, L.; Zeng, Q. L. Fresen. Environ. Bull. 2015, 24, 3686.

    48. [48]

      Bhunia, A.; Roy, T.; Pachfule, P.; Rajamohanan, P. R.; Biju, A. T. Angew. Chem., Int. Ed. 2013, 52, 10040. 

    49. [49]

      Lin, W.; Sapountzis, I.; Knochel, P. Angew. Chem. 2005, 44, 4258.

    50. [50]

      Zhao, J.; Larock, R. C. J. Org. Chem. 2007, 72, 583. 

    51. [51]

      Toledo, F. T.; Marques, H.; Comasseto, J. V.; Raminelli, C. Tetrahedron Lett. 2007, 48, 8125. 

    52. [52]

      Edwards, A. J.; Willis, A. C.; Wenger, E. Organometallics 2002, 21, 1654. 

    53. [53]

      Dong, Y.; Liu, B.; Chen, P.; Liu, Q.; Wang, M. Angew. Chem., Int. Ed. 2014, 53, 3442. 

    54. [54]

      Pawliczek, M.; Garve, L. K. B.; Werz, D. B. Org. Lett. 2015, 17, 1716. 

  • 加载中
    1. [1]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    2. [2]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    3. [3]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    7. [7]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    12. [12]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    13. [13]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    14. [14]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    19. [19]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(0)
  • Abstract views(3290)
  • HTML views(952)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return