Citation: Lin Liangbin, Guo Hongyu, Yang Fafu, Yuan Jin. Novel Biscalix[4]arene with Large Conjugated Aromatic Bridges: Synthesis and Complexation Properties for Dyes[J]. Chinese Journal of Organic Chemistry, ;2016, 36(8): 1863-1868. doi: 10.6023/cjoc201602019 shu

Novel Biscalix[4]arene with Large Conjugated Aromatic Bridges: Synthesis and Complexation Properties for Dyes

  • Corresponding author: Yang Fafu, yangfafu@fjnu.edu.cn
  • Received Date: 21 February 2016
    Revised Date: 23 March 2016

    Fund Project: the Natural Science Foundation of Fujian Province No. 2014J01034Project supported by the National Natural Science Foundation of China No. 21406036the Science and Technology Key Project of Fujian Province (No. 2014N0025) and the Program for Innovative Research Team in Science and Technology in Fujian Province University No. [2012]03

Figures(6)

  • By reacting calix[4]arene-1,3-bis-amino derivative 3 with pyromellitic dianhydride, 1,4,5,8-naphthalenetetracar- boxylic dianhydride and perylene-3,4,9,10-tetracarboxylic dianhydride, respectively, three novel biscalix[4]arene derivatives 4, 5 and 6 with large conjugated aromatic bridges were prepared in “2+2” mode in yields of 60%~70%. The liquid-liquid extraction experiments of compounds 4, 5 and 6 suggested that they possess excellent extraction abilities for orange I (OI) and victoria blue B (VB). The extraction percentage of compound 6 for OI is as high as 88.3%. The complexation titration UV-vis spectra, Job plot titration and the ESI-MS complexation spectrum implied the formation of 1:1 complexes in DMSO solution. The highest association constant is 2.80×105 L·mol-1 for compound 6 with OI. The complexation abilities of compounds 4, 5 and 6 exhibit the order of compound 4< compound 5< compound 6, indicating that the aromatic conjugate bridges in biscalix[4]arene play important role for the dye complexation.
  • 加载中
    1. [1]

      Wong, Y.; Yu, J. Water Res. 1999, 33, 3512.

    2. [2]

      Parker, H. L.; Hunt, A. J.; Budarin, V. L.; Shuttleworth, P. S.; Miller, K. L.; Clark, J. H. RSC Adv. 2012, 2, 8992. 

    3. [3]

      Guo Y. L.; Hou W. G.; Liang J. L.; Liu J. Q.; Rinaudo M. Chem. Res. Chin. Univ. 2014, 30, 837.

    4. [4]

      Apostol, L. C.; Pereira, L.; Pereira, R.; Gavrilescu, M.; Alves, M. M. Biodegradation 2012, 23, 725. 

    5. [5]

      Moghaddam, S. S.; Alavi Moghaddama, M. R.; Arami, M. J. Hazard. Mater. 2010, 175, 651. 

    6. [6]

      Muthuraman, G. Desalination 2011, 277, 7308.

    7. [7]

      Kamboh, M. A.; Akoz, E.; Memon, S. Yilmaz, M. Water Air Soil Pollut. 2013, 224, 1424. 

    8. [8]

      Kim, J. S.; Quang, D. T. Chem. Rev. 2007, 107, 3780. 

    9. [9]

      Yuan, Z.; Liang, F. Curr. Org. Chem. 2014, 18, 2016.

    10. [10]

      Rebek, J. Chem. Commun. 2000, 637.

    11. [11]

      Guo, D. S.; Liu, Y. Chem. Soc. Rev. 2012, 41, 5907. 

    12. [12]

      Akceylan, E.; Bahadir, M.; Yilmaz, M. J. Hazard. Mater. 2009, 162, 960. 

    13. [13]

      Yilmaz, E. O.; Sirit, A.; Yilmaz, M. J. Macromol. Sci. A: Pure Appl. Chem. 2007, 44, 167. 

    14. [14]

      Yilmaz, A.; Yilmaz, E.; Yilmaz, M. Dyes Pigm. 2007, 74, 54.

    15. [15]

      Kamboh, M. A.; Solangi, I. B.; Sherazi, S. T. H. Desalination 2011, 268, 83. 

    16. [16]

      Kamboh, M. A.; Solangi, I. B.; Memon, S. J. Hazard. Mater. 2011, 186, 651. 

    17. [17]

      Akceylan, E.; Erdemir, S. J. Inclusion Phenom. Macrocyclic Chem. 2015, 82, 471. 

    18. [18]

      Bandela, A. K.; Hinge, V. K.; Yarramala, D. S.; Rao, C. P. ACS Appl. Mater. Interfaces 2015, 7, 11555. 

    19. [19]

       

    20. [20]

    21. [21]

      Fang, X. T.; Guo, H. Y.; Yang, F. F.; Bai, X. Y. Chem. Res. Chin. Univ. 2015, 31, 1051. 

    22. [22]

      Guo, H. Y.; Yang, F. F.; Jiao, Z. Y.; Lin, J. R. Chin. Chem. Lett. 2013, 24, 450. 

    23. [23]

      Geng, X. T.; Zhu, S. Y.; Guo, H. Y.; Yang, F. F. J. Inclusion Phenom. Macrocyclic Chem. 2015, 82, 93. 

    24. [24]

      Tsai, C. C.; Ho, I. T.; Chu, J. H.; Shen, L. C.; Huang, S. L.; Chung, W. S. J. Org. Chem. 2012, 77, 2254. 

    25. [25]

      Yang, F. F.; Hong, B. Q.; Chai, X. F.; Yin, F. J.; Chen, Y. Y. Supramol. Chem. 2009, 21, 691. 

    26. [26]

      Yang, F. F.; Zheng, X. H.; Guo, H. Y.; Liu, Z. H.; Guo, Y. J. Inclusion Phenom. Macrocyclic Chem. 2008, 62, 371. 

    27. [27]

       

    28. [28]

      Guo, H. Y.; Yang, F. F.; Yuan, J.; Bai, X. Y. J. Iran. Chem. Soc. 2015, 12, 197. 

    29. [29]

      Jin, C. M.; Lu, G. Y., Liu,Y.; You, X. Z.; Wang, Z. H.; Wu, H. M. Chin. J. Chem. 2002, 20, 1080.

    30. [30]

      Renny, J. S.; Tomasevich, L. L.; Tallmadge, E. H.; Collum, D. B. Angew. Chem., Int. Ed. 2013, 52, 2.

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    5. [5]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    6. [6]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    10. [10]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    11. [11]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    12. [12]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    13. [13]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    14. [14]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    15. [15]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    16. [16]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    17. [17]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    18. [18]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    19. [19]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    20. [20]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

Metrics
  • PDF Downloads(0)
  • Abstract views(612)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return