Citation: Li Xiaowei, Zhou Jin, Zhuo Shuping. Recent Progress of Supported N-Heterocyclic Carbene Catalyst in Organic Reactions[J]. Chinese Journal of Organic Chemistry, ;2016, 36(7): 1484-1500. doi: 10.6023/cjoc201601022 shu

Recent Progress of Supported N-Heterocyclic Carbene Catalyst in Organic Reactions

  • Corresponding author: Zhuo Shuping, zhuosp_academic@yahoo.com
  • Received Date: 18 January 2016
    Revised Date: 6 March 2016

    Fund Project: the National Natural Science Foundation of China Nos. 51502162, 21576159the Open Foundation of State Key Laboratory of Coordination Chemistry of Nanjing University No. SKLCC1613

Figures(1)

  • The supported N-heterocyclic carbene (NHC) catalysts have been extensively applied in the catalysis of different organic reactions due to its unique characteristic such as high reactivity, easy separation, purification and recyclability. In this paper, the recent progresses in synthesis and application of supported N-heterocyclic carbene metal complexes based on various types of supports, such as polymer, magnetic nanoparticles, carbon and silica material have been reviewed.
  • 加载中
    1. [1]

      Öfele, K. J. J. Organomet. Chem. 1968, 12, 42. 

    2. [2]

      Wanzlick, H. W.; Schönherr, H. J. Angew. Chem., Int. Ed. Engl. 1968, 7, 141.

    3. [3]

      Arduengo, A. J.; Harlow, R. L.; Kilne, M. J. Am. Chem. Soc. 1991, 113, 361. 

    4. [4]

       

    5. [5]

       

    6. [6]

      Yang, H.-Q.; Wang, Y.-W.; Qin, Y.; Chong, Y.-Z.; Yang, Q.-Z.; Li, G.; Zhang, L.; Li, W. Green Chem. 2011, 13, 1352.

    7. [7]

      Bru, M.; Dehn, R.; Teles, J. H.; Deuerlein, S.; Danz, M.; Müller, I. B.; Limbach, M. Chem. Eur. J. 2013, 19, 11661. 

    8. [8]

      Molnár, Á. Chem. Rev. 2011, 111, 2251.

    9. [9]

      Ranganath, K. V. S.; Onitsuka, S.; Kumar, A. K.; Inanaga, J. Catal. Sci. Technol. 2013, 3, 2161.

    10. [10]

      Schwarz, J.; Böhm, V. P. W.; Gardiner, M. G.; Grosche, M.; Herrmann, W. A.; Hieringer, W.; Raudaschl-Sieber, G. Chem. Eur. J. 2000, 6, 1773. 

    11. [11]

      Byun, J. W.; Lee, Y.-S. Tetrahedron Lett. 2004, 45, 1837. 

    12. [12]

      Lee, D. H.; Kim, J. H.; Jun, B. H.; Kang, H.; Park, J.; Lee, Y. S. Org. Lett. 2008, 10, 1609. 

    13. [13]

      Kim, J. W.; Kim, J. H.; Lee, D. H.; Lee, Y. S. Tetrahedron Lett. 2006, 47, 4745. 

    14. [14]

      Kim, J. H.; Kim, J. W.; Shokouhimehr, M.; Lee, Y. S. J. Org. Chem. 2005, 70, 6714. 

    15. [15]

      Kim, J. H.; Lee, D. H.; Jun, B. H.; Lee, Y. S. Tetrahedron Lett. 2007, 48, 7079. 

    16. [16]

      Steel, P. G.; Teasdale, C. W. T. Tetrahedron Lett. 2004, 45, 8977. 

    17. [17]

      Yan, C.; Zeng, X.-M.; Zhang, W.-F.; Luo, M.-M. J. Organomet. Chem. 2006, 691, 3391.

    18. [18]

      Gil, W.; Boczoń, K.; Trzeciak, A. M.; Ziółkowski, J. J.; Garcia- Verdugo, E.; Luis, S. V.; Sans, V. J. Mol. Catal. A: Chem. 2009, 309, 131. 

    19. [19]

      Jafarpour, L.; Heck, M. P.; Baylon, C.; Lee, H. M.; Mioskowski, C.; Nolan, S. P. Organometallics 2002, 21, 671. 

    20. [20]

      Yao, Q.-W.; Zhang, Y.-L. J. Am. Chem. Soc. 2004, 126, 74. 

    21. [21]

      Mennecke, K.; Grela, K.; Kunz, U.; Kirschning, A. Synlett 2005, 2948. 

    22. [22]

      Qureshi, Z. S.; Deshmukh, K. M.; Tambade, P. J.; Bhanage, B. M. Synthesis 2011, 243.

    23. [23]

      Bagal, D. B.; Watile, R. A.; Khedkar, M. V.; Dhake, K. P.; Bhanage, B. M. Catal. Sci. Technol. 2012, 2, 354. 

    24. [24]

      Qureshi, Z. S.; Revankar, S. A.; Khedkar, M. V.; Bhanage, B. M. Catal. Today 2012, 198, 148. 

    25. [25]

      He, Y.; Cai, C. Chem. Commun. 2011, 47, 12319.

    26. [26]

      Bergbreiter, D. E.; Su, H. L.; Koizumi, H.; Tian, J.-H. J. Organomet. Chem. 2011, 696, 1272. 

    27. [27]

      Yu, T.; Li, Y.; Yao, C.-F.; Wu, H.-H.; Liu, Y.-M.; Wu, P. Chin. J. Catal. 2011, 32, 1712.

    28. [28]

      Lin, M.-J.; Wang, S.-J.; Zhang, J.-Y.; Luo, W.-J.; Liu, H.-L.; Wang, W.; Su, C.-Y. J. Mol. Catal. A: Chem. 2014, 394, 33.

    29. [29]

      Xu, S.-J.; Song, K.-P.; Li, T.; Tan, B. J. Mater. Chem. A 2015, 3, 1272. 

    30. [30]

      Pahlevanneshan, Z.; Moghadam, M.; Mirkhani, V.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Rezaei, S. Appl. Organomet. Chem. 2015, 29, 678. 

    31. [31]

      Wang, X.-X.; Hu, P.-B.; Xue, F.-J.; Wei, Y.-P. Carbohydr. Polym. 2014, 114, 476.

    32. [32]

      Stevens, P. D.; Li, G.-F.; Fan, J.-D.; Yen, M.; Gao, Y. Chem. Commun. 2005, 4435.

    33. [33]

      Ranganath, K. V. S.; Schäfer, A. H.; Glorius, F. ChemCatChem 2011, 3, 1889. 

    34. [34]

      Wittmann, S.; Majoral, J. P.; Grass, R. N.; Stark, W. J.; Reiser, O. Green Process. Synth. 2012, 1, 275.

    35. [35]

      Ghotbinejad, M.; Khosropour, A. R.; Mohammadpoor-Baltork, I.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. J. Mol. Catal. A: Chem. 2014, 385, 78. 

    36. [36]

      Zhao, H.-X.; Li, L.-Y.; Wang, J.-Y.; Wang, R.-H. Nanoscale 2015, 7, 3532.

    37. [37]

      Wang, Z.; Yu, Y.; Zhang, Y.-X.; Li, S.-Z.; Qian, H.; Lin, Z.-Y. Green Chem. 2015, 17, 413.

    38. [38]

      Iglesias, D.; Sabater, S.; Azua, A.; Mata, J. A. New J. Chem. 2015, 39, 6437. 

    39. [39]

      Shang, N.-Z.; Gao, S.-T.; Feng, C.; Zhang, H.-Y.; Wang, C.; Wang, Z. RSC Adv. 2013, 3, 21863.

    40. [40]

      Park, J. H.; Raza, F.; Jeon, S. J.; Kim, H. I.; Kang, T. W.; Yim, D. B.; Kim, J. H. Tetrahedron Lett. 2014, 55, 3426. 

    41. [41]

      Movaherd, S. K.; Esmatpoursalmani, R.; Bazgir, A. RSC Adv. 2014, 4, 14586. 

    42. [42]

      Sabater, S.; Mata, J. A.; Peris, E. ACS Catal. 2014, 4, 2038. 

    43. [43]

      Sabater, S.; Mata, J. A.; Peris, E. Organometallics 2015, 34, 1186. 

    44. [44]

      Blanco, M.; Álvarez, P.; Blanco, C.; Jiménez, M. V.; Fernández-Tornos, J.; Pérez-Torrente, J. J.; Oro, L. A.; Menéndez, R. Carbon 2015, 83, 21.

    45. [45]

      Blanco, M.; Álvarez, P.; Blanco, C.; Jiménez, M. V.; Fernández- Tornos, J.; Pérez-Torrente, J. J.; Oro, L. A.; Menéndez, R. ACS Catal. 2013, 3, 1307.

    46. [46]

      Blanco, M.; Álvarez, P.; Blanco, C.; Jiménez, M. V.; Fernández-Tornos, J.; Pérez-Torrente, J. J.; Blasco, j.; Subías, G.; Cuartero, V.; Oro, L. A.; Menéndez, R. Carbon 2016, 96, 66.

    47. [47]

      Zhao, Y.-H.; Zhou, Y.-Y.; Ma, D.-D.; Liu, J.-P.; Li, L.; Zhang, T.-Y.; Zhang, H.-B. Org. Biomol. Chem. 2003, 1, 1643.

    48. [48]

      Pozo, C. D.; Corma, A.; Iglesias, M.; Sánchez, F. Organometallics 2010, 29, 4491.

    49. [49]

      Pozo, C. D.; Corma, A.; Iglesias, M.; Sánchez, F. Green Chem. 2011, 13, 2471.

    50. [50]

      Dastgir, S.; Coleman, K. S.; Green, M. L. H. Dalton Trans. 2011, 40, 661.

    51. [51]

      Liu, G.; Hou, M.-Q.; Wu, T.-B.; Jiang, T.; Fan, H.-L.; Yang, G.-Y.; Han, B.-X. Phys. Chem. Chem. Phys. 2011, 13, 2062.

    52. [52]

      Li, G.; Yang, H.-Q.; Li, W.; Zhang, G.-L. Green Chem. 2011, 13, 2939.

    53. [53]

      Lázaro, G.; Fernández-Alvarez, F. J.; Iglesias, M.; Horna, C.; Vispe, E.; Sancho, R.; Lahoz, F. J.; Iglesias, M.; Pérez-Torrente, J. J.; Oro, L. A. Catal. Sci. Technol. 2014, 4, 62. 

    54. [54]

      Fernández, M.; Ferré, M.; Pla-Quintana, A.; Parella, T.; Pleixats, R.; Roglans, A. Eur. J. Org. Chem. 2014, 6242.

    55. [55]

      Rostamnia, S.; Hossieni, H. G.; Doustkhah, E. J. Organomet. Chem. 2015, 791, 18. 

    56. [56]

      Tyrrell, E.; Whiteman, L.; Williams, N. J. Organomet. Chem. 2011, 696, 3465. 

    57. [57]

      Borja, G.; Monge-Marcet, A.; Pleixats, R.; Parella, T.; Cattoën, X.; Michel Man, M. W. C. Eur. J. Org. Chem. 2012, 3625.

    58. [58]

      Tamami, B.; Farjadian, F.; Ghasemi, S.; Allahyari, H. New J. Chem. 2013, 37, 2011.

    59. [59]

      Ghiaci, M.; Zarghani, M.; Khojastehnezhad, A.; Moeinpour, F. RSC Adv. 2014, 4, 15496.

    60. [60]

      Conley, M. P.; Copéret, C.; Thieuleux, C. ACS Catal. 2014, 4, 1458.

    61. [61]

      Martínez, A.; Krinsky, J. L.; Peñafiel, I.; Castillón, S.; Loponov, K.; Lapkin, A.; Godard, C.; Claver, C. Catal. Sci. Technol. 2015, 5, 310.

    62. [62]

      Pahlevanneshan, Z.; Moghadam, M.; Mirkhani, V.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Rezaei, S. New. J. Chem. 2015, 39, 9729.

    63. [63]

      Romanenko, I.; Gajan, D.; Sayah, R.; Crozet, D.; Jeanneau, E.; Lucas, C.; Leroux, L.; Veyre, L.; Lesage, A.; Emsley, L.; Lacôte, E.; Thieuleux, C. Angew. Chem., Int. Ed. 2015, 54, 1. 

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    4. [4]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    5. [5]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    6. [6]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    9. [9]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    10. [10]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    19. [19]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(0)
  • Abstract views(1081)
  • HTML views(137)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return