Citation: Li Gongming, Sun Dequn. Recent Advances of Direct Incorporation of Fluorine-Containing Groups and 18F-Labeling Methods[J]. Chinese Journal of Organic Chemistry, ;2016, 36(8): 1715-1740. doi: 10.6023/cjoc201601009 shu

Recent Advances of Direct Incorporation of Fluorine-Containing Groups and 18F-Labeling Methods

  • Corresponding author: Sun Dequn, dequn.sun@sdu.edu.cn
  • Received Date: 9 January 2016
    Revised Date: 16 February 2016

Figures(48)

  • Fluorine-containing groups have strong electron-withdrawing effect and high lipophilicity, organic molecules incorporated fluorine-containing groups can improve its function. Therefore, the incorporation of fluorine-containing groups into molecules has become the current research hotspot. The method for incorporation of CF3S group becomes one of the hot research field due to its excellent nature. The strategy for incorporation of CF3Se, CF3O and CF3CH2O groups has also been the attention of researchers. 18F has nearly ideal nuclear properties and is the most widely used positron emission tomography (PET) radioisotope for clinical imaging. Therefore, the development of new [18F]radiotracers becomes the research focus of many researchers. The method for 18F-labeling of biomolecules is the key to the development of new [18F]radiotracers. This paper mainly introduce the recently reported methodology of direct incorporating CF3X (X=S, Se, O, CH2O) groups into molecules and some research results of 18F-labeling methods. Furthermore, some noteworthy research directions in this field are summarized.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

       

    4. [4]

      Keating, G. M. Drugs 2014, 74, 207. 

    5. [5]

      Infante, J. R.; Fecher, L. A.; Falchook, G. S.; Nallapareddy, S.; Gordon, M. S.; Becerra, C.; DeMarini, D. J.; Cox, D. S.; Xu, Y.; Morris, S. R.; Peddareddigari, V. G. R.; Le, N. T.; Hart, L.; Bendell, J. C.; Eckhardt, G.; Kurzrock, R.; Flaherty, K.; Burris, H. A.; Messersmith, W. A. Lancet Oncol. 2012, 13, 773. 

    6. [6]

      Rheault, T. R.; Stellwagen, J. C.; Adjabeng, G. M.; Hornberger, K. R.; Petrov, K. G.; Waterson, A. G.; Dickerson, S. H.; Mook, R. A.; Laquerre, S. G.; King, A. J.; Rossanese, O. W.; Arnone, M. R.; Smitheman, K. N.; Kane-Carson, L. S.; Han, C.; Moorthy, G. S.; Moss, K. G.; Uehling, D. E. ACS Med. Chem. Lett. 2013, 4, 358. 

    7. [7]

      Fruman, D. A.; Cantley, L. C. N. Engl. J. Med. 2014, 370, 1061. 

    8. [8]

      Rice, K. D.; Aay, N.; Anand, N. K.; Blazey, C. M.; Bowles, O. J.; Bussenius, J.; Costanzo, S.; Curtis, J. K.; Defina, S. C.; Dubenko, L.; Engst, S.; Joshi, A. A.; Kennedy, A. R.; Kim, A. I.; Koltun, E. S.; Lougheed, J. C.; Manalo, J. C.; Martini, J. F.; Nuss, J. M.; Peto, C. J.; Tsang, T. H.; Yu, P.; Johnston, S. ACS Med. Chem. Lett. 2012, 3, 416.

    9. [9]

      Menear, K. A.; Adcock, C.; Boulter, R.; Cockcroft, X.-l.; Copsey, L.; Cranston, A.; Dillon, K. J.; Drzewiecki, J.; Garman, S.; Gomez, S.; Javaid, H.; Kerrigan, F.; Knights, C.; Lau, A.; Loh, V. M., Jr.; Matthews, I. T. W.; Moore, S.; O'Connor, M. J.; Smith, G. C. M.; Martin, N. M. B. J. Med. Chem. 2008, 51, 6581. 

    10. [10]

      Pan, S.; Wu, X.; Jiang, J.; Gao, W.; Wan, Y.; Cheng, D.; Han, D.; Liu, J.; Englund, N. P.; Wang, Y.; Peukert, S.; Miller-Moslin, K.; Yuan, J.; Guo, R.; Matsumoto, M.; Vattay, A.; Jiang, Y.; Tsao, J.; Sun, F.; Pferdekamper, A. C.; Dodd, S.; Tuntland, T.; Maniara, W.; Kelleher, J. F., III; Yao, Y.-m.; Warmuth, M.; Williams, J.; Dorsch, M. ACS Med. Chem. Lett. 2010, 1, 130.

    11. [11]

      Wu, J. Tetrahedron Lett. 2014, 55, 4289.(b) Campbell, M. G.; Ritter, T. Org. Process Res. Dev. 2014, 18, 474.(c) Lin, J.-H.; Xiao, J.-C. Tetrahedron Lett. 2014, 55, 6147.(d) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.(e) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 115, 826. 

    12. [12]

    13. [13]

      Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165. 

    14. [14]

    15. [15]

      Zhang, K.; Liu, J. B.; Qing, F. L. Chem. Commun. 2014, 50, 14157. 

    16. [16]

      Li, C.; Zhang, K.; Xu, X.-H.; Qing, F.-L. Tetrahedron Lett. 2015, 56, 6273.

    17. [17]

      Wu, H.; Xiao, Z.; Wu, J.; Guo, Y.; Xiao, J. C.; Liu, C.; Chen, Q. Y. Angew. Chem. 2015, 127, 4142. 

    18. [18]

      Guo, S.; Zhang, X.; Tang, P. Angew. Chem., Int. Ed. Engl. 2015, 54, 4065. 

    19. [19]

      Somei, M.; Yamada, F. Nat. Prod. Rep. 2005, 22, 73.(b) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875. 

    20. [20]

      Fuentes, N.; Kong, W.; Fernandez-Sanchez, L.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 964. 

    21. [21]

    22. [22]

      Qiu, Y. F.; Zhu, X. Y.; Li, Y. X.; He, Y. T.; Yang, F.; Wang, J.; Hua, H. L.; Zheng, L.; Wang, L. C.; Liu, X. Y.; Liang, Y. M. Org. Lett. 2015, 17, 3694. 

    23. [23]

      Ong, E. B. B.; Watanabe, N.; Saito, A.; Futamura, Y.; Abd El Galil, K. H.; Koito, A.; Najimudin, N.; Osada, H. J. Biol. Chem. 2011, 286, 14049. 

    24. [24]

      Taechowisan, T.; Lu, C.; Shen, Y.; Lumyong, S. Microbiology 2005, 151, 1691.

    25. [25]

      Taechowisan, T.; Lu, C.; Shen, Y.; Lumyong, S. Food Agric. Immunol. 2007, 18, 203.

    26. [26]

      Bailly, C.; Bal, C.; Barbier, P.; Combes, S.; Finet, J.-P.; Hildebrand, M.-P.; Peyrot, V.; Wattez, N. J. Med. Chem. 2003, 46, 5437.(b) Rappl, C.; Barbier, P.; Bourgarel-Rey, V.; Gregoire, C.; Gilli, R.; Carre, M.; Combes, S.; Finet, J.-P.; Peyrot, V. Biochemistry 2006, 45, 9210. 

    27. [27]

      Argotte-Ramos, R.; Ramirez-Avila, G.; Rodriguez-Gutierrez, M. d. C.; Ovilla-Munoz, M.; Lanz-Mendoza, H.; Rodriguez, M. H.; Gonzalez-Cortazar, M.; Alvarez, L. J. Nat. Prod. 2006, 69, 1442. 

    28. [28]

      Zeng, Y.-F.; Tan, D.-H.; Chen, Y.; Lv, W.-X.; Liu, X.-G.; Li, Q.; Wang, H. Org. Chem. Front. 2015, 2, 1511. 

    29. [29]

      Matheis, C.; Wagner, V.; Goossen, L. J. Chem. Eur. J. 2016, 22, 79. 

    30. [30]

      Huang, Y.; He, X.; Lin, X.; Rong, M.; Weng, Z. Org. Lett. 2014, 16, 3284.

    31. [31]

      Sheng, J.; Wu, J. Org. Biomol. Chem. 2014, 12, 7629. 

    32. [32]

      Xiao, Q.; Zhu, H.; Li, G.; Chen, Z. Adv. Synth. Catal. 2014, 356, 3809. 

    33. [33]

      Korte, A.; Legros, J.; Bolm, C. Synlett 2005, 36, 2397.

    34. [34]

      Jereb, M.; Gosak, K. Org. Biomol. Chem. 2015, 13, 3103. 

    35. [35]

      Wu, W.; Zhang, X.; Liang, F.; Cao, S. Org. Biomol. Chem. 2015, 13, 6992. 

    36. [36]

      Mortensen, D. S.; Rodriguez, A. L.; Carlson, K. E.; Sun, J.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. J. Med. Chem. 2001, 44, 3838.(b) Faul, M. M.; Huff, B. E. Chem. Rev. 2000, 100, 2407. 

    37. [37]

      Chen, D. Q.; Gao, P.; Zhou, P. X.; Song, X. R.; Qiu, Y. F.; Liu, X. Y.; Liang, Y. M. Chem. Commun. 2015, 51, 6637. 

    38. [38]

      Alazet, S.; Zimmer, L.; Billard, T. Chem. Eur. J. 2014, 20, 8589. 

    39. [39]

      Alazet, S.; Ismalaj, E.; Glenadel, Q.; Le Bars, D.; Billard, T. Eur. J. Org. Chem. 2015, 2015, 4607.

    40. [40]

      Alazet, S.; Zimmer, L.; Billard, T. J. Fluorine Chem. 2015, 171, 78. 

    41. [41]

      Glenadel, Q.; Alazet, S.; Billard, T. J. Fluorine Chem. 2015, 179, 89. 

    42. [42]

      Munavalli, S.; Rohrbaugh, D. K.; Rossman, D. I.; Berg, F. J.; Wagner, G. W.; Durst, H. D. Synth. Commun. 2000, 30, 2847. 

    43. [43]

      Kang, K.; Xu, C.; Shen, Q. Org. Chem. Front. 2014, 1, 294. 

    44. [44]

      Honeker, R.; Ernst, J. B.; Glorius, F. Chem. Eur. J. 2015, 21, 8047. 

    45. [45]

      Xiong, H. Y.; Besset, T.; Cahard, D.; Pannecoucke, X. J. Org. Chem. 2015, 80, 4204. 

    46. [46]

      Yang, Y.-D.; Azuma, A.; Tokunaga, E.; Yamasaki, M.; Shiro, M.; Shibata, N. J. Am. Chem. Soc. 2013, 135, 8782. 

    47. [47]

      Arimori, S.; Takada, M.; Shibata, N. Org. Lett. 2015, 17, 1063.

    48. [48]

      Jiang, L.; Qian, J.; Yi, W.; Lu, G.; Cai, C.; Zhang, W. Angew. Chem., Int. Ed. 2015, 54, 14965. 

    49. [49]

      Yang, Y.; Xu, L.; Yu, S.; Liu, X.; Zhang, Y.; Vicic, D. A. Chem. Eur. J. 2016, 22, 858. 

    50. [50]

      Liu, T.; Shen, Q. Org. Lett. 2011, 13, 2342.

    51. [51]

      Shao, X.; Wang, X.; Yang, T.; Lu, L.; Shen, Q. Angew. Chem., Int. Ed. 2013, 52, 3457. 

    52. [52]

      Vinogradova, E. V.; Mueller, P.; Buchwald, S. L. Angew. Chem., Int. Ed. 2014, 53, 3125. 

    53. [53]

      Shao, X.; Xu, C.; Lu, L.; Shen, Q. J. Org. Chem. 2015, 80, 3012. 

    54. [54]

      Shao, X.; Xu, C.; Lu, L.; Shen, Q. Acc. Chem. Res. 2015, 48, 1227. 

    55. [55]

      Li, Y.; Ye, Z.; Bellman, T. M.; Chi, T.; Dai, M. Org. Lett. 2015, 17, 2186.

    56. [56]

      Xu, C.; Ma, B.; Shen, Q. Angew. Chem., Int. Ed. 2014, 53, 9316. 

    57. [57]

      Xu, C.; Shen, Q. Org. Lett. 2015, 17, 4561.

    58. [58]

      Wang, Q.; Xie, F.; Li, X. J. Org. Chem. 2015, 80, 8361. 

    59. [59]

      Maeno, M.; Shibata, N.; Cahard, D. Org. Lett. 2015, 17, 1990.

    60. [60]

      Jiang, M.; Zhu, F.; Xiang, H.; Xu, X.; Deng, L.; Yang, C. Org. Biomol. Chem. 2015, 13, 6935. 

    61. [61]

      Yin, G.; Kalvet, I.; Schoenebeck, F. Angew. Chem. 2015, 127, 6913.

    62. [62]

      Zhong, W.; Liu, X. Tetrahedron Lett. 2014, 55, 4909.

    63. [63]

      Weng, Z.; He, W.; Chen, C.; Lee, R.; Tan, D.; Lai, Z.; Kong, D.; Yuan, Y.; Huang, K. W. Angew. Chem., Int. Ed. 2013, 52, 1548. 

    64. [64]

      Kong, D.; Jiang, Z.; Xin, S.; Bai, Z.; Yuan, Y.; Weng, Z. Tetrahedron 2013, 69, 6046.

    65. [65]

      Lin, Q.; Chen, L.; Huang, Y.; Rong, M.; Yuan, Y.; Weng, Z. Org. Biomol. Chem. 2014, 12, 5500. 

    66. [66]

      Huang, Y.; He, X.; Li, H.; Weng, Z. Eur. J. Org. Chem. 2014, 2014, 7324.

    67. [67]

      Zhu, P.; He, X.; Chen, X.; You, Y.; Yuan, Y.; Weng, Z. Tetrahedron 2014, 70, 672.

    68. [68]

      Hou, C.; Lin, X.; Huang, Y.; Chen, Z.; Weng, Z. Synthesis 2015, 47, 969.

    69. [69]

      Huang, Y.; Ding, J.; Wu, C.; Zheng, H.; Weng, Z. J. Org. Chem. 2015, 80, 2912. 

    70. [70]

      Wang, Z.; Tu, Q.; Weng, Z. J. Organomet. Chem. 2014, 751, 830. 

    71. [71]

      Li, J.; Xie, F.-F.; Wang, P.; Wu, Q.-Y.; Chen, W.-D.; Ren, J.; Zeng, B.-B. Tetrahedron 2015, 71, 5520.

    72. [72]

      Zheng, J.; Wang, L.; Lin, J. H.; Xiao, J. C.; Liang, S. H. Angew. Chem. 2015, 127, 13434. 

    73. [73]

      Zheng, J.; Cai, J.; Lin, J.-H.; Guo, Y.; Xiao, J.-C. Chem. Commun. 2013, 49, 7513.(b) Qiao, Y.; Si, T.; Yang, M.-H.; Altman, R. A. J. Org. Chem. 2014, 79, 7122.(c) Levin, V. V.; Trifonov, A. L.; Zemtsov, A. A.; Struchkova, M. I.; Arkhipov, D. E.; Dilman, A. D. Org. Lett. 2014, 16, 6256.

    74. [74]

      Li, S.-G.; Zard, S. Z. Org. Lett. 2013, 15, 5898. 

    75. [75]

      Yang, H.-B.; Fan, X.; Wei, Y.; Shi, M. Org. Chem. Front. 2015, 2, 1088. 

    76. [76]

      Aufiero, M.; Sperger, T.; Tsang, A. S.; Schoenebeck, F. Angew. Chem., Int. Ed. 2015, 54, 10322. 

    77. [77]

      Papp, L. V.; Holmgren, A.; Khanna, K. K. Antioxid. Redox Signaling 2010, 12, 793. 

    78. [78]

      Nogueira, C. W.; Zeni, G.; Rocha, J. B. T. Chem. Rev. 2004, 104, 6255. 

    79. [79]

      Lefebvre, Q.; Pluta, R.; Rueping, M. Chem. Commun. 2015, 51, 4394.

    80. [80]

      Chen, C.; Hou, C.; Wang, Y.; Hor, T. S.; Weng, Z. Org. Lett. 2014, 16, 524.

    81. [81]

      Chen, C.; Ouyang, L.; Lin, Q.; Liu, Y.; Hou, C.; Yuan, Y.; Weng, Z. Chem. Eur. J. 2014, 20, 657. 

    82. [82]

      Rong, M.; Huang, R.; You, Y.; Weng, Z. Tetrahedron 2014, 70, 8872.(b) Feng, Z.; Chen, F.; Zhang, X. G. Org. Lett. 2012, 14, 1938.(c) Zhao, T. S. N.; Szabo, K. J. Org. Lett. 2012, 14, 3966.

    83. [83]

      Wang, Y.; You, Y.; Weng, Z. Org. Chem. Front. 2015, 2, 574. 

    84. [84]

      Wu, C.; Huang, Y.; Chen, Z.; Weng, Z. Tetrahedron Lett. 2015, 56, 3838.

    85. [85]

      Chen, S.; Huang, Y.; Fang, X.; Li, H.; Zhang, Z.; Hor, T. S.; Weng, Z. Dalton Trans 2015, 44, 19682. 

    86. [86]

      Hojczyk, K. N.; Feng, P.; Zhan, C.; Ngai, M. Y. Angew. Chem., Int. Ed. 2014, 53, 14559. 

    87. [87]

      Feng, P.; Lee, K. N.; Lee, J. W.; Zhan, C.; Ngai, M.-Y. Chem. Sci. 2016, 7, 424.

    88. [88]

      Huang, Y.; Huang, R.; Weng, Z. Synlett 2015, 2327.

    89. [89]

      Sun, X. Q.; Lyu, Y. R.; Zhang-Negrerie, D.; Du, Y. F.; Zhao, K. Org. Lett. 2013, 15, 6222.

    90. [90]

      Huang, R.; Huang, Y.; Lin, X.; Rong, M.; Weng, Z. Angew. Chem., Int. Ed. 2015, 54, 5736. 

    91. [91]

      Wang, Y.; You, Y.; Weng, Z. J. Fluorine Chem. 2015, 175, 51. 

    92. [92]

      Rangarajan, T. M.; Devi, K.; Ayushee; Prasad, A. K.; Singh, R. P. Tetrahedron 2015, 71, 8307. 

    93. [93]

      Hargreaves, R. J.; Rabiner, E. A. Neurobiol. Dis. 2014, 61, 32. 

    94. [94]

      Cai, L.; Lu, S.; Pike, V. W. Eur. J. Org. Chem. 2008, 2853.(b) Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D. Angew. Chem., Int. Ed. 2008, 47, 8998.(c) Jacobson, O.; Chen, X. Curr. Top. Med. Chem. 2010, 10, 1048.(d) Pimlott, S. L.; Sutherland, A. Chem. Soc. Rev. 2011, 40, 149.(e) Smith, G. E.; Sladen, H. L.; Biagini, S. C. G.; Blower, P. J. Dalton Trans. 2011, 40, 6196.

    95. [95]

      Zeng, J. L.; Wang, J.; Ma, J. A. Bioconjugate Chem. 2015, 26, 1000.(b) Jacobson, O.; Kiesewetter, D. O.; Chen, X. Bioconjugate Chem. 2015, 26, 1. 

    96. [96]

      Kettenbach, K.; Schieferstein, H.; Ross, T. L. BioMed. Res. Int. 2014, 2014, 361329.

    97. [97]

      Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596. 

    98. [98]

      Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057. 

    99. [99]

      Marik, J.; Sutcliffe, J. L. Tetrahedron Lett. 2006, 47, 6681. 

    100. [100]

      Choi, J. Y.; Lee, B. C. Nucl. Med. Mol. Imaging 2015, 49, 258. 

    101. [101]

      Maschauer, S.; Prante, O. BioMed. Res. Int. 2014, 214748/1.

    102. [102]

      Kim, D. W. J. Fluorine Chem. 2015, 174, 142. 

    103. [103]

      Liu, Z.; Pourghiasian, M.; Radtke, M. A.; Lau, J.; Pan, J.; Dias, G. M.; Yapp, D.; Lin, K. S.; Bénard, F.; Perrin, D. M. Angew. Chem., Int. Ed. 2014, 53, 11876.(b) Liu, Z.; Lin, K. S.; Bénard, F.; Pourghiasian, M.; Kiesewetter, D. O.; Perrin, D. M.; Chen, X. Nat. Protoc. 2015, 10, 1423. 

    104. [104]

      Schirrmacher, R.; Bradmoeller, G.; Schirrmacher, E.; Thews, O.; Tillmanns, J.; Siessmeier, T.; Bucholz, H. G.; Bartenstein, P.; Waengler, B.; Niemeyer, C. M.; Jurkschat, K. Angew. Chem., Int. Ed. 2006, 45, 6047.(b) Li, Z. B.; Chansaenpak, K.; Liu, S. L.; Wade, C. R.; Conti, P. S.; Gabbai, F. P. MedChemComm 2012, 3, 1305. 

    105. [105]

      Pourghiasian, M.; Liu, Z.; Pan, J.; Zhang, Z.; Colpo, N.; Lin, K. S.; Perrin, D. M.; Bénard, F. Bioorg. Med. Chem. 2015, 23, 1500. 

    106. [106]

      Thompson, S.; Onega, M.; Ashworth, S.; Fleming, I. N.; Passchier, J.; O'Hagan, D. Chem. Commun. 2015, 51, 13542.

    107. [107]

      Khotavivattana, T.; Verhoog, S.; Tredwell, M.; Pfeifer, L.; Calderwood, S.; Wheelhouse, K.; Lee Collier, T.; Gouverneur, V. Angew. Chem., Int. Ed. 2015, 54, 9991. 

    108. [108]

      Huang, X.; Liu, W.; Ren, H.; Neelamegam, R.; Hooker, J. M.; Groves, J. T. J. Am. Chem. Soc. 2014, 136, 6842.(b) Liu, W.; Groves, J. T. Acc. Chem. Res. 2015, 48, 1727. 

    109. [109]

      Jacobson, O.; Yan, X.; Ma, Y.; Niu, G.; Kiesewetter, D. O.; Chen, X. Bioconjugate Chem. 2015, 26, 2016. 

    110. [110]

      Di Mauro, P. P.; Gomez-Vallejo, V.; Baz Maldonado, Z.; Llop Roig, J.; Borrós, S. Bioconjugate Chem. 2015, 26, 582.

    111. [111]

      McBride, W. J.; Sharkey, R. M.; Karacay, H.; D'Souza, C. A.; Rossi, E. A.; Laverman, P.; Chang, C. H.; Boerman, O. C.; Goldenberg, D. M. J. Nucl. Med. 2009, 50, 991. 

    112. [112]

      Chen, F.; Zhu, B.; Pan, D.; Xu, Y.; Lin, X.; Yang, R.; Wang, L.; Yang, M. J. Radioanal. Nucl. Chem. 2016, 308, 905. 

    113. [113]

      Shetty, D.; Jeong, J. M.; Kim, Y. J.; Lee, J. Y.; Hoigebazar, L.; Lee, Y. S.; Lee, D. S.; Chung, J. K. Bioorg. Med. Chem. 2012, 20, 5941. 

    114. [114]

      Agranat, I.; Caner, H.; Caldwell, J. Nat. Rev. Drug Discovery 2002, 1, 753. 

    115. [115]

      Brooks, W. H.; Guida, W. C.; Daniel, K. G. Curr. Top. Med. Chem. 2011, 11, 760. 

    116. [116]

      Buckingham, F.; Gouverneur, V.; Kirjavainen Anna, K.; Forsback, S.; Krzyczmonik, A.; Keller, T.; Solin, O.; Newington Ian, M.; Glaser, M.; Luthra Sajinder, K. Angew. Chem., Int. Ed. 2015, 54, 13366. 

    117. [117]

      Teare, H.; Robins, E. G.; Aarstad, E.; Luthra, S. K.; Gouverneur, V. Chem. Commun. 2007, 2330.

    118. [118]

      Hensley, C. T.; Wasti, A. T.; DeBerardinis, R. J. J. Clin. Invest. 2013, 123, 3678. 

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    6. [6]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    7. [7]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    11. [11]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    12. [12]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    13. [13]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    14. [14]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    15. [15]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    16. [16]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    17. [17]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    18. [18]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    19. [19]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(0)
  • Abstract views(4334)
  • HTML views(1220)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return