Citation: Kong Xiangfei, Liu Peng, Wang Guixia, Xia Liting, Dai Shengping, Su Jian, Liao Peihai, Liu Zheng, Mu Linping. Synthesis and Properties of Alkoxy-Bridged Triphenylene and Perylene Monoimide Diesters Dyads[J]. Chinese Journal of Organic Chemistry, ;2016, 36(6): 1325-1334. doi: 10.6023/cjoc201512048 shu

Synthesis and Properties of Alkoxy-Bridged Triphenylene and Perylene Monoimide Diesters Dyads

  • Corresponding author: Wang Guixia, 2010033@glut.edu.cn Mu Linping, mulinping6266@163.com
  • Received Date: 30 December 2015
    Revised Date: 22 January 2016

    Fund Project: Project supported by the National Natural Science Fondation of China Nos. 11364013, 21266006the Education Department of Guangxi Province No. KY2015YB129

Figures(10)

  • Columnar discotic liquid crystals have high charge carrier mobility, and donor-bridge-accepter-based supra-mole- cular compounds have photoinduced intramolecular electron transfer behavior. In order to make the organic materials possess these two performances, dyads composed of hexaalkoxy triphenylene unit and perylene monoimide diesters unit were prepared in this work. In the dyads, the flexible alkoxys were used as bridges, the triphenylene units having six electron-donating alkoxy tails acted as electron donors, and the perylene monoimide diesters units having four electron-withdrawing carbonyls acted as electron acceptors. Their structures were established by proton nuclear magnetic resonance (1H NMR), infrared spectroscopy (IR), mass spectrometry (MS) and elemental analysis (EA). The photophysical properties were characterized by means of UV-Vis absorption spectroscopy and fluorescence spectroscopy. The results showed that in dilute dichloromethane solutions the absorbance strength of these dyads was the sum of that of their monomers, hexakishexyloxy triphenylene (HAT6) and N-hexyl-perylene monoimide dihexyl esters (PMD6), and not interfered by the length of flexible bridges. When excited at 475 nm, the strength of the fluorescence of the dyads decreased when the spacers shortened from dodecyloxy, decyloxy, hexyloxy to ethoxy groups. Actually, when the spacer was ethoxy group, the fluorescence of the dyad was almost quenched completely. This is attributed to the photoinduced electron transfer properties (PET) between the donor and acceptor units. When excited at 280 nm, the strength of the fluorescence of the triphenylene units also became weaker when the spacers shortened from dodecyloxy to ethanyloxy. At the same time, the strength of the fluorescence of the perylene units became stronger. This is attributed to energy transfer from the triphenylene unit to the perylene unit. In addition, their liquid crystalline properties have been studied by polarized optical microscopy (POM) and differential scanning calorimetry (DSC). The results demonstrated that when the spacers were decyloxy and dodecyloxy the dyads possessed columnar liquid crystal behavior in the heating circle, while in the cooling circle only the dyad bearing the dodecyloxy spacer showed mesophase; and dyads bridged by the hexyloxy or ethanyloxy did not show liquid crystal properties in the heating or cooling circle. Electronic energy levels of triphenylene and perylene units of the dyads measured by cyclic voltammetry (CV) are almost the same as that of HAT6 and PMD6, respectively. In conclusion, these dyads have the potential application in the organic photovoltaic field.
  • 加载中
    1. [1]

      Chandrasekhar, S.; Sadashiva, B. K.; Suresh, K. A. Pramana 1977, 9, 471. 

    2. [2]

      Bushby, R. J.; Lozman, O. R. Curr. Opin. Colloid Interface Sci. 2002, 7, 343.

    3. [3]

      Kumar, S. Liq. Cryst. 2004, 31, 1037.

    4. [4]

      Kumar, S. Liq. Cryst. 2013, 40, 1769.

    5. [5]

      Tschierske, C. Angew. Chem., Int. Ed. 2013, 52, 8828. 

    6. [6]

      Laschat, S.; Baro, A.; Steinke, N.; Giesselmann, F.; Hagele, C.; Scalia, G.; Judele, R.; Kapatsina, E.; Sauer, S.; Schreivogel, A.; Tosoni, M. Angew. Chem., Int. Ed. 2007, 46, 4832. 

    7. [7]

      Bushby, R. J.; Lozman, O. R. Curr. Opin. Solid State Mater. Sci. 2002, 6, 569. 

    8. [8]

      Haverkate, L. A.; Zbiri, M.; Johnson, M. R.; Deme, B. J. Phys Chem. B. 2011, 115, 13809. 

    9. [9]

      Craats, A. M.; Warman, J. M.; Fechtenk, A.; Brand, J. D.; Harbison, M. A.; Mullen, K. Adv. Mater 1999, 11, 1469.

    10. [10]

    11. [11]

      Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119. 

    12. [12]

      Pisula, W.; Menon, A.; Stepputat, M.; Lieberwirth, I.; Kolb, U.; Tracz, A.; Sirringhaus, H.; Pakula, T.; Mullen, K. Adv. Mater. 2005, 17, 684.

    13. [13]

    14. [14]

       

    15. [15]

       

    16. [16]

      Ma, X.; Li, Y.; Qiu, X.; Zhao, K.; Yang, Y.; Wang, C. J. Mater. Chem. 2009, 19, 1490.  

    17. [17]

      Zhu, Y.; Tian, H.; Wu, H.; Hao, D.; Zhou, Y.; Shen, Z.; Zou, D.; Sun, P.; Fan, X.; Zhou, Q. J. Polym. Sci. Part A: Polym. Chem. 2014, 52, 295. 

    18. [18]

      Chen, H.; Zhao, K.; Wang, L.; Hu, P.; Wang, B. Soft Mater. 2011, 9, 359.

    19. [19]

      Han, B.; Hu, P.; Wang, B.; Redshaw, C.; Zhao, K. Beilstein J. Org. Chem. 2013, 9, 2852.

    20. [20]

      Yang, F.; Zhang, Y.; Guo, H.; Lin, J. Tetrahedron Lett. 2013, 54, 4953.

    21. [21]

      Zhao, K.; An, L.; Zhang, X.; Yu, W.; Hu, P.; Wang, B.; Xu, J.; Zeng, Q.; Monobe, H.; Shimizu, Y.; Heinrich, B.; Donnio, B. Chem. Eur. J. 2015, 21, 10379 

    22. [22]

      Wang, Y.; Zhang, C.; Wu, H.; Pu, J. J. Mater. Chem. C, 2014, 2, 1667. 

    23. [23]

    24. [24]

      Boden, N.; Bushby, R. J.; Cammidge, A. N.; El-Mansoury, A.; Philip, S.; Martin, P. S.; Lu, Z. J. Mater. Chem. 1999, 9, 1391. 

    25. [25]

      Kumar, S. Liq. Cryst. 2005, 32, 1089.

    26. [26]

    27. [27]

      Hassheider, T.; Benning, S. A.; Kitzerow, H.; Achard, M.; Bock. H. Angew. Chem., Int. Ed. 2001, 40, 2060. 

    28. [28]

      Wicklein, A.; Lang, A.; Much, M.; Thelakkat, M. J. Am. Chem. Soc. 2009, 131, 14442. 

    29. [29]

      Langhals, H. Helv. Chim. Acta 2005, 88, 1309. 

    30. [30]

    31. [31]

      Gupta, S. K.; Setia, S.; Sidiq, S.; Gupta, M.; Kumar, S.; Pal, S. K. RSC Adv. 2013, 3, 12060. 

    32. [32]

    33. [33]

      Lu, Z.; Zhang, X.; Zhan, C.; Jiang, B.; Zhang, X.; Chen, L.; Yao, J.; Phys. Chem. Chem. Phys. 2013, 15, 11375.

    34. [34]

      Adam, D.; Closs, F.; Frey, T.; Funhoff, D.; Haarer, D.; Ringsdorf, H.; Schuhmacher, P.; Siemesmeyer, K. Phys. Rev. Lett. 1993, 70, 457. 

    35. [35]

      Zhao, B.; Peng, R.; Zhang, K.; Lin, K. A.; Luo, J.; Shao, J.; Ho, P., K. H.; Wu, J. Chem. Mater. 2010, 22, 435.

    36. [36]

      Yang, L.; Shi, M.; Wang, M.; Chen, H. Tetrahedron 2008, 64, 5404.

    37. [37]

    38. [38]

    39. [39]

    40. [40]

    41. [41]

    42. [42]

      Kong, X.; He, Z.; Gopee, H.; Jing, X.; Cammidge, A. N. Tetrahedron Lett. 2011, 52, 77. 

    43. [43]

       

    44. [44]

      Kong, X.; He, Z.; Zhang, Y.; Mu, L.; Liang, C.; Chen, B.; Jing, X.; Cammidge. A. N. Org. Lett. 2011, 13, 764.

    45. [45]

    46. [46]

      Mo, X.; Shi, M.; Huang, J.; Wang, M.; Chen, H. Dyes Pigm. 2008, 76, 236.

    47. [47]

      Wang, R.; Shi, Z, Zhang, C.; Zhang, A.; Chen, J.; Guo W.; Sun, Z. Dyes Pigm. 2013, 98, 450.

  • 加载中
    1. [1]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    2. [2]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    3. [3]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    4. [4]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    5. [5]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    6. [6]

      Yang Chen Xiuying Wang Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184

    7. [7]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    8. [8]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    9. [9]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    10. [10]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    11. [11]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    12. [12]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    13. [13]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    14. [14]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    15. [15]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    16. [16]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    17. [17]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    18. [18]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    19. [19]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    20. [20]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

Metrics
  • PDF Downloads(0)
  • Abstract views(1352)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return