Citation: Wang Gang, Guo Yan, Lü Ying, Wang Xicun, Quan Zhengjun. Synthesis of 1,2-Di(pyrimidin-2-yl)disulfides from the Oxidative Coupling and Aromatization of 3,4-Dihydropyrimidin-2-thiones by Using 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone as Oxidant[J]. Chinese Journal of Organic Chemistry, ;2016, 36(6): 1375-1381. doi: 10.6023/cjoc201512038 shu

Synthesis of 1,2-Di(pyrimidin-2-yl)disulfides from the Oxidative Coupling and Aromatization of 3,4-Dihydropyrimidin-2-thiones by Using 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone as Oxidant

  • Corresponding author: Wang Xicun, wangxicun@nnwu.edu.cn Quan Zhengjun, quanzhengjun@hotmail.com
  • Received Date: 25 December 2015
    Revised Date: 21 January 2016

    Fund Project: Project supported by the National Natural Science Foundation of China Nos. 21362032, 21362031

Figures(4)

  • The oxidative coupling and aromatization of 3,4-dihydropyrimidin-2-thiones to produce 1,2-di(pyrimidin-2-yl)- disulfides by using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as oxidant at room temperature under an air atmosphere are reported. Compared with the reported procedures, this method has obvious advantages at mild reaction conditions including lower reaction temperature and shorter reaction time with higher yields of products.
  • 加载中
    1. [1]

      Arterburn, J. B.; Perry, M. C.; Nelson, S. L.; Dible, B. R.; Holguin, M. S. J. Am. Chem. Soc. 1997, 119, 9309. (b) Yang, J.; Stuart, M. A. C.; Kamperman, M. Chem. Soc. Rev. 2014, 43, 8271. (c) Saito, G.; Swanson, J. A.; Lee, K. D. Adv. Drug Delivery Rev. 2003, 55, 199. 

    2. [2]

      Otto, S.; Furlan, R. L. E.; Sanders, J. K. M. Science 2002, 297, 590. (b) Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart, J. F. Angew. Chem. Int. Ed. 2002, 41, 898. (c) Mandal, B.; Basu, B. RSC Adv. 2014, 4, 13854.

    3. [3]

      Sinha, P.; Kundu, A.; Roy, S.; Prabhakar, S.; Vairamani, M.; Sankar, A. R.; Kunwar, A. C. Organometallics 2001, 20, 157. (b) Ranu, B. C.; Mandal, T. J. Org. Chem. 2004, 69, 5793. (c) Baldovino-Pantaleón, O.; Hernández-Ortega, S.; Morales- Morales, D. Adv. Synth. Catal. 2006, 348, 236. (d) Arisawa, M.; Suzuki, T.; Ishikawa, T.; Yamaguchi, M. J. Am. Chem. Soc. 2008, 130, 12214. (e) Duan, Z.; Ranjit, S.; Zhang, P.; Liu, X. Chem. Eur. J. 2009, 15, 3666. (f) Gogoi, P.; Gogoi, S. R.; Kalita, M.; Barman, P. Synlett 2013, 873. (g) Cheng, J.-H.; Yi, C.-L.; Liu, T.-J.; Le, C.-F. Chem. Commun. 2012, 48, 8440. (h) Prasad, C. D.; Balkrishna, S. J.; Kumar, A.; Bhakuni, B. S.; Shrimali, K.; Biswas, S.; Kumar, S. J. Org. Chem. 2013, 78, 1434. (i) Ge, W.; Wei, Y. Green Chem. 2012, 14, 2066. (j) Xu, X.-B.; Liu, J.; Zhang, J.-J.; Wang, Y.-W.; Peng, Y. Org. Lett. 2013, 15, 550. 

    4. [4]

      Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2002, 4, 4309. (b) Taniguchi, N. J. Org. Chem. 2007, 72, 1241. 

    5. [5]

      Kondo, T.; Uenoyama, S.-Y.; Fujita, K.-I.; Mitsudo, T.-A. J. Am. Chem. Soc. 1999, 121, 482. (b) Singh, S.; Yadav, L. D. S. Org. Biomol. Chem. 2012, 10, 3932. (c) Matsumoto, K.; Sanada, T.; Shimazaki, H.; Shimada, K.; Hagiwara, S.; Fujie, S.; Ashikari, Y.; Suga, S.; Kashimura, S.; Yoshida, J. Asian J. Org. Chem. 2013, 2, 325.

    6. [6]

      Arisawa, M.; Yamaguchi, M. Org. Lett. 2001, 3, 763. (b) Arisawa, M.; Fujimoto, K.; Morinaka, S.; Yamaguchi, M. J. Am. Chem. Soc. 2005, 127, 12226. (c) Du, H.-A.; Zhang, X.-G.; Tang, R.-Y.; Li, J.-H. J. Org. Chem. 2009, 74, 7844. (d) Du, H.-A.; Tang, R.-Y.; Deng, C.-L.; Liu, Y.; Li, J.-H.; Zhang, X.-G. Adv. Synth. Catal. 2011, 353, 2739. (e) Usugi, S.-I.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. Org. Lett. 2004, 6, 601. (f) Hu, B.-L.; Pi, S.-S.; Qian, P.-C.; Li, J.-H.; Zhang, X.-G. J. Org. Chem. 2013, 78, 1300. (g) Gonçalves, L. C. C.; Victória, F. N.; Lima, D. B.; Borba, P. M. Y.; Perin, G.; Savegnago, L.; Lenardão, E. J. Tetrahedron Lett. 2014, 38, 5275.

    7. [7]

      Grayson, E. J.; Ward, S. J.; Hall, A. L.; Rendle, P. M.; Gamblin, D. P.; Batsanov, A. S.; Davis, B. G. J. Org. Chem. 2005, 70, 9740. (b) Ajiki, K.; Hirano, M.; Tanaka, K. Org. Lett. 2005, 7, 4193. (c) Hyvl, J.; Srogl, J. Eur. J. Org. Chem. 2010, 2849. (d) Zhang, S.; Qian, P.; Zhang, M.; Hu, M.; Cheng, J. J. Org. Chem. 2010, 75, 6732. (e) Zhu, N.; Zhang, F.; Liu, G. J. Comb. Chem. 2010, 12, 531. (f) Mitamura, T.; Iwata, K.; Ogawa, A. J. Org. Chem. 2011, 76, 3880. (g) Deng, H.; Li, Z.; Ke, F.; Zhou, X. Chem. Eur. J. 2012, 18, 4840. (h) Kundu, D.; Ahammed, S.; Ranu, B. C. Green Chem. 2012, 14, 2024. (i) Mukherjee, N.; Chatterjee, T.; Ranu, B. C. J. Org. Chem. 2013, 78, 11110. 

    8. [8]

      For selected examples, see: (a) Du, Y.; Yang, H.-C.; Xu, X.-L.; Wu, J.; Xu, Z.-K. ChemCatChem 2015, 7, 3822. (b) Chauhan, D.; Kumar, P.; Joshi, C.; Labhsetwar, N.; Ganguly, S. K.; Jain, S. L. New J. Chem., 2015, 39, 6193. (c) Bagi, N.; Kaizer, J.; Speier, G. O. RSC Adv. 2015, 5, 45983. (d) Talla, A.; Driessen, B.; Straathof, N. J. W.; Milroy, L.-G.; Brunsveld, L.; Hessel, V.; Noël, T. Adv. Synth. Catal. 2015, 357, 2180.

    9. [9]

       

    10. [10]

      Quan, Z.-J.; Lv, Y.; Wang, Z.-J.; Zhang, Z.; Da, Y.-X.; Wang, X.-C. Tetrahedron Lett. 2013, 54, 1884. (b) Quan, Z.-J.; Lv, Y.; Jing, F.-Q.; Jia, X.-D.; Wang, X.-C. Adv. Synth. Catal. 2014, 356, 325. (c) Du, B.-X.; Quan, Z.-J.; Da, Y.-X.; Zhang, Z.; Wang, X.-C. Adv. Synth. Catal. 2015, 357, 1270. (d) Guo, Y.; Quan, Z.-J.; Da, Y.-X.; Zhang, Z. Wang, X.-C. RSC Adv. 2015, 5, 45479.

    11. [11]

      Hayashi, M.; Okunaga, K.-i.; Nishida, S.; Kawamura, K.; Eda, K. Tetrahedron Lett. 2010, 51, 6734.

    12. [12]

      Lo, W. S.; Hu, W. P.; Lo, H. P.; Chen, C. Y.; Kao, C. L.; Vandavasi, J. K.; Wang, J. J. Org. Lett. 2010, 12, 5570. (b) Vandavasi, J. K.; Hub, W.-P.; Chen, C.-Y.; Wang, J.-J. Tetrahedron 2011, 67, 8895. 

    13. [13]

      Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260. 

    14. [14]

      Wang, X. C.; Quan, Z. J.; Wang, F.; Wang, M. G.; Zhang, Z.; Li, Z. Synth. Commun. 2006, 36, 451.

  • 加载中
    1. [1]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    2. [2]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    3. [3]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    4. [4]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    8. [8]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    9. [9]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    10. [10]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    11. [11]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    14. [14]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    15. [15]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    19. [19]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    20. [20]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(0)
  • Abstract views(984)
  • HTML views(187)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return